Metamath Proof Explorer


Theorem axcontlem5

Description: Lemma for axcont . Compute the value of F . (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypotheses axcontlem5.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
axcontlem5.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
Assertion axcontlem5 N Z 𝔼 N U 𝔼 N Z U P D F P = T T 0 +∞ i 1 N P i = 1 T Z i + T U i

Proof

Step Hyp Ref Expression
1 axcontlem5.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
2 axcontlem5.2 F = x t | x D t 0 +∞ i 1 N x i = 1 t Z i + t U i
3 1 2 axcontlem2 N Z 𝔼 N U 𝔼 N Z U F : D 1-1 onto 0 +∞
4 f1of F : D 1-1 onto 0 +∞ F : D 0 +∞
5 3 4 syl N Z 𝔼 N U 𝔼 N Z U F : D 0 +∞
6 5 ffvelrnda N Z 𝔼 N U 𝔼 N Z U P D F P 0 +∞
7 eleq1 F P = T F P 0 +∞ T 0 +∞
8 6 7 syl5ibcom N Z 𝔼 N U 𝔼 N Z U P D F P = T T 0 +∞
9 simpl T 0 +∞ i 1 N P i = 1 T Z i + T U i T 0 +∞
10 9 a1i N Z 𝔼 N U 𝔼 N Z U P D T 0 +∞ i 1 N P i = 1 T Z i + T U i T 0 +∞
11 f1ofn F : D 1-1 onto 0 +∞ F Fn D
12 3 11 syl N Z 𝔼 N U 𝔼 N Z U F Fn D
13 fnbrfvb F Fn D P D F P = T P F T
14 12 13 sylan N Z 𝔼 N U 𝔼 N Z U P D F P = T P F T
15 14 3adant3 N Z 𝔼 N U 𝔼 N Z U P D T 0 +∞ F P = T P F T
16 eleq1 x = P x D P D
17 fveq1 x = P x i = P i
18 17 eqeq1d x = P x i = 1 t Z i + t U i P i = 1 t Z i + t U i
19 18 ralbidv x = P i 1 N x i = 1 t Z i + t U i i 1 N P i = 1 t Z i + t U i
20 19 anbi2d x = P t 0 +∞ i 1 N x i = 1 t Z i + t U i t 0 +∞ i 1 N P i = 1 t Z i + t U i
21 16 20 anbi12d x = P x D t 0 +∞ i 1 N x i = 1 t Z i + t U i P D t 0 +∞ i 1 N P i = 1 t Z i + t U i
22 eleq1 t = T t 0 +∞ T 0 +∞
23 oveq2 t = T 1 t = 1 T
24 23 oveq1d t = T 1 t Z i = 1 T Z i
25 oveq1 t = T t U i = T U i
26 24 25 oveq12d t = T 1 t Z i + t U i = 1 T Z i + T U i
27 26 eqeq2d t = T P i = 1 t Z i + t U i P i = 1 T Z i + T U i
28 27 ralbidv t = T i 1 N P i = 1 t Z i + t U i i 1 N P i = 1 T Z i + T U i
29 22 28 anbi12d t = T t 0 +∞ i 1 N P i = 1 t Z i + t U i T 0 +∞ i 1 N P i = 1 T Z i + T U i
30 29 anbi2d t = T P D t 0 +∞ i 1 N P i = 1 t Z i + t U i P D T 0 +∞ i 1 N P i = 1 T Z i + T U i
31 anass P D T 0 +∞ T 0 +∞ P D T 0 +∞ T 0 +∞
32 anidm T 0 +∞ T 0 +∞ T 0 +∞
33 32 anbi2i P D T 0 +∞ T 0 +∞ P D T 0 +∞
34 31 33 bitr2i P D T 0 +∞ P D T 0 +∞ T 0 +∞
35 34 anbi1i P D T 0 +∞ i 1 N P i = 1 T Z i + T U i P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i
36 anass P D T 0 +∞ i 1 N P i = 1 T Z i + T U i P D T 0 +∞ i 1 N P i = 1 T Z i + T U i
37 anass P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i
38 35 36 37 3bitr3i P D T 0 +∞ i 1 N P i = 1 T Z i + T U i P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i
39 30 38 bitrdi t = T P D t 0 +∞ i 1 N P i = 1 t Z i + t U i P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i
40 21 39 2 brabg P D T 0 +∞ P F T P D T 0 +∞ T 0 +∞ i 1 N P i = 1 T Z i + T U i
41 40 bianabs P D T 0 +∞ P F T T 0 +∞ i 1 N P i = 1 T Z i + T U i
42 41 3adant1 N Z 𝔼 N U 𝔼 N Z U P D T 0 +∞ P F T T 0 +∞ i 1 N P i = 1 T Z i + T U i
43 15 42 bitrd N Z 𝔼 N U 𝔼 N Z U P D T 0 +∞ F P = T T 0 +∞ i 1 N P i = 1 T Z i + T U i
44 43 3expia N Z 𝔼 N U 𝔼 N Z U P D T 0 +∞ F P = T T 0 +∞ i 1 N P i = 1 T Z i + T U i
45 8 10 44 pm5.21ndd N Z 𝔼 N U 𝔼 N Z U P D F P = T T 0 +∞ i 1 N P i = 1 T Z i + T U i