Description: Any segment A B can be extended to a point x such that B x is congruent to C D . Axiom A4 of Schwabhauser p. 11. (Contributed by Scott Fenton, 4-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axsegcon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axsegconlem1 | |
|
2 | 1 | ex | |
3 | simprll | |
|
4 | simprlr | |
|
5 | simpl | |
|
6 | simprr | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 7 8 9 | axsegconlem8 | |
11 | 7 8 | axsegconlem7 | |
12 | 7 8 9 | axsegconlem10 | |
13 | 7 8 9 | axsegconlem9 | |
14 | fveq1 | |
|
15 | 14 | oveq2d | |
16 | 15 | oveq2d | |
17 | 16 | eqeq2d | |
18 | 17 | ralbidv | |
19 | 14 | oveq2d | |
20 | 19 | oveq1d | |
21 | 20 | sumeq2sdv | |
22 | 21 | eqeq1d | |
23 | 18 22 | anbi12d | |
24 | oveq2 | |
|
25 | 24 | oveq1d | |
26 | oveq1 | |
|
27 | 25 26 | oveq12d | |
28 | 27 | eqeq2d | |
29 | 28 | ralbidv | |
30 | 29 | anbi1d | |
31 | 23 30 | rspc2ev | |
32 | 10 11 12 13 31 | syl112anc | |
33 | 3 4 5 6 32 | syl31anc | |
34 | 33 | ex | |
35 | 2 34 | pm2.61ine | |
36 | simpllr | |
|
37 | simplll | |
|
38 | simpr | |
|
39 | brbtwn | |
|
40 | 36 37 38 39 | syl3anc | |
41 | simplrl | |
|
42 | simplrr | |
|
43 | brcgr | |
|
44 | 36 38 41 42 43 | syl22anc | |
45 | 40 44 | anbi12d | |
46 | r19.41v | |
|
47 | 45 46 | bitr4di | |
48 | 47 | rexbidva | |
49 | 35 48 | mpbird | |
50 | 49 | 3adant1 | |