| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axsegconlem1 |  | 
						
							| 2 | 1 | ex |  | 
						
							| 3 |  | simprll |  | 
						
							| 4 |  | simprlr |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 7 8 9 | axsegconlem8 |  | 
						
							| 11 | 7 8 | axsegconlem7 |  | 
						
							| 12 | 7 8 9 | axsegconlem10 |  | 
						
							| 13 | 7 8 9 | axsegconlem9 |  | 
						
							| 14 |  | fveq1 |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 | 16 | eqeq2d |  | 
						
							| 18 | 17 | ralbidv |  | 
						
							| 19 | 14 | oveq2d |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 20 | sumeq2sdv |  | 
						
							| 22 | 21 | eqeq1d |  | 
						
							| 23 | 18 22 | anbi12d |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 | 24 | oveq1d |  | 
						
							| 26 |  | oveq1 |  | 
						
							| 27 | 25 26 | oveq12d |  | 
						
							| 28 | 27 | eqeq2d |  | 
						
							| 29 | 28 | ralbidv |  | 
						
							| 30 | 29 | anbi1d |  | 
						
							| 31 | 23 30 | rspc2ev |  | 
						
							| 32 | 10 11 12 13 31 | syl112anc |  | 
						
							| 33 | 3 4 5 6 32 | syl31anc |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 2 34 | pm2.61ine |  | 
						
							| 36 |  | simpllr |  | 
						
							| 37 |  | simplll |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 |  | brbtwn |  | 
						
							| 40 | 36 37 38 39 | syl3anc |  | 
						
							| 41 |  | simplrl |  | 
						
							| 42 |  | simplrr |  | 
						
							| 43 |  | brcgr |  | 
						
							| 44 | 36 38 41 42 43 | syl22anc |  | 
						
							| 45 | 40 44 | anbi12d |  | 
						
							| 46 |  | r19.41v |  | 
						
							| 47 | 45 46 | bitr4di |  | 
						
							| 48 | 47 | rexbidva |  | 
						
							| 49 | 35 48 | mpbird |  | 
						
							| 50 | 49 | 3adant1 |  |