Metamath Proof Explorer


Theorem axsegcon

Description: Any segment A B can be extended to a point x such that B x is congruent to C D . Axiom A4 of Schwabhauser p. 11. (Contributed by Scott Fenton, 4-Jun-2013)

Ref Expression
Assertion axsegcon NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCD

Proof

Step Hyp Ref Expression
1 axsegconlem1 A=BA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
2 1 ex A=BA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
3 simprll ABA𝔼NB𝔼NC𝔼ND𝔼NA𝔼N
4 simprlr ABA𝔼NB𝔼NC𝔼ND𝔼NB𝔼N
5 simpl ABA𝔼NB𝔼NC𝔼ND𝔼NAB
6 simprr ABA𝔼NB𝔼NC𝔼ND𝔼NC𝔼ND𝔼N
7 eqid p=1NApBp2=p=1NApBp2
8 eqid p=1NCpDp2=p=1NCpDp2
9 eqid k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2
10 7 8 9 axsegconlem8 A𝔼NB𝔼NABC𝔼ND𝔼Nk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2𝔼N
11 7 8 axsegconlem7 A𝔼NB𝔼NABC𝔼ND𝔼Np=1NApBp2p=1NApBp2+p=1NCpDp201
12 7 8 9 axsegconlem10 A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
13 7 8 9 axsegconlem9 A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2
14 fveq1 x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2xi=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
15 14 oveq2d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2txi=tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
16 15 oveq2d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp21tAi+txi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
17 16 eqeq2d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2Bi=1tAi+txiBi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
18 17 ralbidv x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i1NBi=1tAi+txii1NBi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
19 14 oveq2d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2Bixi=Bik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
20 19 oveq1d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2Bixi2=Bik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2
21 20 sumeq2sdv x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i=1NBixi2=i=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2
22 21 eqeq1d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i=1NBixi2=i=1NCiDi2i=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2
23 18 22 anbi12d x=k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2i1NBi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2ii=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2
24 oveq2 t=p=1NApBp2p=1NApBp2+p=1NCpDp21t=1p=1NApBp2p=1NApBp2+p=1NCpDp2
25 24 oveq1d t=p=1NApBp2p=1NApBp2+p=1NCpDp21tAi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai
26 oveq1 t=p=1NApBp2p=1NApBp2+p=1NCpDp2tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i=p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
27 25 26 oveq12d t=p=1NApBp2p=1NApBp2+p=1NCpDp21tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
28 27 eqeq2d t=p=1NApBp2p=1NApBp2+p=1NCpDp2Bi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2iBi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
29 28 ralbidv t=p=1NApBp2p=1NApBp2+p=1NCpDp2i1NBi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2ii1NBi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i
30 29 anbi1d t=p=1NApBp2p=1NApBp2+p=1NCpDp2i1NBi=1tAi+tk1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2ii=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2i1NBi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2ii=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2
31 23 30 rspc2ev k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2𝔼Np=1NApBp2p=1NApBp2+p=1NCpDp201i1NBi=1p=1NApBp2p=1NApBp2+p=1NCpDp2Ai+p=1NApBp2p=1NApBp2+p=1NCpDp2k1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2ii=1NBik1Np=1NApBp2+p=1NCpDp2Bkp=1NCpDp2Akp=1NApBp2i2=i=1NCiDi2x𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
32 10 11 12 13 31 syl112anc A𝔼NB𝔼NABC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
33 3 4 5 6 32 syl31anc ABA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
34 33 ex ABA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
35 2 34 pm2.61ine A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
36 simpllr A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NB𝔼N
37 simplll A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NA𝔼N
38 simpr A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼Nx𝔼N
39 brbtwn B𝔼NA𝔼Nx𝔼NBBtwnAxt01i1NBi=1tAi+txi
40 36 37 38 39 syl3anc A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxt01i1NBi=1tAi+txi
41 simplrl A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NC𝔼N
42 simplrr A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼ND𝔼N
43 brcgr B𝔼Nx𝔼NC𝔼ND𝔼NBxCgrCDi=1NBixi2=i=1NCiDi2
44 36 38 41 42 43 syl22anc A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBxCgrCDi=1NBixi2=i=1NCiDi2
45 40 44 anbi12d A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCDt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
46 r19.41v t01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2t01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
47 45 46 bitr4di A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCDt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
48 47 rexbidva A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCDx𝔼Nt01i1NBi=1tAi+txii=1NBixi2=i=1NCiDi2
49 35 48 mpbird A𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCD
50 49 3adant1 NA𝔼NB𝔼NC𝔼ND𝔼Nx𝔼NBBtwnAxBxCgrCD