Metamath Proof Explorer


Theorem ballotlemimin

Description: ( IC ) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
Assertion ballotlemimin COE¬k1IC1FCk=0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 elfzle2 k1IC1kIC1
10 9 adantl COEk1IC1kIC1
11 elfzelz k1IC1k
12 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
13 12 simpld COEIC1M+N
14 13 elfzelzd COEIC
15 zltlem1 kICk<ICkIC1
16 11 14 15 syl2anr COEk1IC1k<ICkIC1
17 10 16 mpbird COEk1IC1k<IC
18 17 adantr COEk1IC1FCk=0k<IC
19 1zzd COE1
20 14 19 zsubcld COEIC1
21 20 zred COEIC1
22 nnaddcl MNM+N
23 1 2 22 mp2an M+N
24 23 a1i COEM+N
25 24 nnred COEM+N
26 elfzle2 IC1M+NICM+N
27 13 26 syl COEICM+N
28 24 nnzd COEM+N
29 zlem1lt ICM+NICM+NIC1<M+N
30 14 28 29 syl2anc COEICM+NIC1<M+N
31 27 30 mpbid COEIC1<M+N
32 21 25 31 ltled COEIC1M+N
33 eluz IC1M+NM+NIC1IC1M+N
34 20 28 33 syl2anc COEM+NIC1IC1M+N
35 32 34 mpbird COEM+NIC1
36 fzss2 M+NIC11IC11M+N
37 35 36 syl COE1IC11M+N
38 37 sseld COEk1IC1k1M+N
39 rabid kk1M+N|FCk=0k1M+NFCk=0
40 1 2 3 4 5 6 7 8 ballotlemsup COEzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
41 ltso <Or
42 41 a1i zwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w<Or
43 id zwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<wzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
44 42 43 inflb zwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<wkk1M+N|FCk=0¬k<supk1M+N|FCk=0<
45 40 44 syl COEkk1M+N|FCk=0¬k<supk1M+N|FCk=0<
46 1 2 3 4 5 6 7 8 ballotlemi COEIC=supk1M+N|FCk=0<
47 46 breq2d COEk<ICk<supk1M+N|FCk=0<
48 47 notbid COE¬k<IC¬k<supk1M+N|FCk=0<
49 45 48 sylibrd COEkk1M+N|FCk=0¬k<IC
50 39 49 biimtrrid COEk1M+NFCk=0¬k<IC
51 38 50 syland COEk1IC1FCk=0¬k<IC
52 51 imp COEk1IC1FCk=0¬k<IC
53 biid k<ICk<IC
54 52 53 sylnib COEk1IC1FCk=0¬k<IC
55 54 anassrs COEk1IC1FCk=0¬k<IC
56 18 55 pm2.65da COEk1IC1¬FCk=0
57 56 nrexdv COE¬k1IC1FCk=0