Metamath Proof Explorer


Theorem ballotlemrinv0

Description: Lemma for ballotlemrinv . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemrinv0 COED=SCCDOEC=SDD

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrval COERC=SCC
12 11 adantr COED=SCCRC=SCC
13 simpr COED=SCCD=SCC
14 12 13 eqtr4d COED=SCCRC=D
15 1 2 3 4 5 6 7 8 9 10 ballotlemrc COERCOE
16 15 adantr COED=SCCRCOE
17 14 16 eqeltrrd COED=SCCDOE
18 1 2 3 4 5 6 7 8 9 ballotlemsf1o COESC:1M+N1-1 onto1M+NSC-1=SC
19 18 simprd COESC-1=SC
20 19 adantr COED=SCCSC-1=SC
21 20 eqcomd COED=SCCSC=SC-1
22 21 13 imaeq12d COED=SCCSCD=SC-1SCC
23 simpl COED=SCCCOE
24 1 2 3 4 5 6 7 8 9 10 ballotlemirc COEIRC=IC
25 24 adantr COED=SCCIRC=IC
26 14 fveq2d COED=SCCIRC=ID
27 25 26 eqtr3d COED=SCCIC=ID
28 1 2 3 4 5 6 7 8 9 ballotlemieq COEDOEIC=IDSC=SD
29 23 17 27 28 syl3anc COED=SCCSC=SD
30 29 imaeq1d COED=SCCSCD=SDD
31 18 simpld COESC:1M+N1-1 onto1M+N
32 f1of1 SC:1M+N1-1 onto1M+NSC:1M+N1-11M+N
33 23 31 32 3syl COED=SCCSC:1M+N1-11M+N
34 eldifi COECO
35 1 2 3 ballotlemelo COC1M+NC=M
36 35 simplbi COC1M+N
37 23 34 36 3syl COED=SCCC1M+N
38 f1imacnv SC:1M+N1-11M+NC1M+NSC-1SCC=C
39 33 37 38 syl2anc COED=SCCSC-1SCC=C
40 22 30 39 3eqtr3rd COED=SCCC=SDD
41 17 40 jca COED=SCCDOEC=SDD