Metamath Proof Explorer


Theorem basellem1

Description: Lemma for basel . Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020)

Ref Expression
Hypothesis basel.n N=2 M+1
Assertion basellem1 MK1MKπN0π2

Proof

Step Hyp Ref Expression
1 basel.n N=2 M+1
2 elfznn K1MK
3 2 nnrpd K1MK+
4 pirp π+
5 rpmulcl K+π+Kπ+
6 3 4 5 sylancl K1MKπ+
7 2nn 2
8 nnmulcl 2M2 M
9 7 8 mpan M2 M
10 9 peano2nnd M2 M+1
11 1 10 eqeltrid MN
12 11 nnrpd MN+
13 rpdivcl Kπ+N+KπN+
14 6 12 13 syl2anr MK1MKπN+
15 14 rpred MK1MKπN
16 14 rpgt0d MK1M0<KπN
17 2 adantl MK1MK
18 nnmulcl K2K2
19 17 7 18 sylancl MK1MK2
20 19 nnred MK1MK2
21 9 adantr MK1M2 M
22 21 nnred MK1M2 M
23 11 adantr MK1MN
24 23 nnred MK1MN
25 1 24 eqeltrrid MK1M2 M+1
26 17 nncnd MK1MK
27 2cn 2
28 mulcom K2K2=2K
29 26 27 28 sylancl MK1MK2=2K
30 elfzle2 K1MKM
31 30 adantl MK1MKM
32 17 nnred MK1MK
33 nnre MM
34 33 adantr MK1MM
35 2re 2
36 2pos 0<2
37 35 36 pm3.2i 20<2
38 37 a1i MK1M20<2
39 lemul2 KM20<2KM2K2 M
40 32 34 38 39 syl3anc MK1MKM2K2 M
41 31 40 mpbid MK1M2K2 M
42 29 41 eqbrtrd MK1MK22 M
43 22 ltp1d MK1M2 M<2 M+1
44 20 22 25 42 43 lelttrd MK1MK2<2 M+1
45 44 1 breqtrrdi MK1MK2<N
46 19 nngt0d MK1M0<K2
47 23 nngt0d MK1M0<N
48 pire π
49 remulcl KπKπ
50 32 48 49 sylancl MK1MKπ
51 6 adantl MK1MKπ+
52 51 rpgt0d MK1M0<Kπ
53 ltdiv2 K20<K2N0<NKπ0<KπK2<NKπN<KπK2
54 20 46 24 47 50 52 53 syl222anc MK1MK2<NKπN<KπK2
55 45 54 mpbid MK1MKπN<KπK2
56 picn π
57 56 a1i MK1Mπ
58 2cnne0 220
59 58 a1i MK1M220
60 17 nnne0d MK1MK0
61 divcan5 π220KK0KπK2=π2
62 57 59 26 60 61 syl112anc MK1MKπK2=π2
63 55 62 breqtrd MK1MKπN<π2
64 0xr 0*
65 rehalfcl ππ2
66 rexr π2π2*
67 48 65 66 mp2b π2*
68 elioo2 0*π2*KπN0π2KπN0<KπNKπN<π2
69 64 67 68 mp2an KπN0π2KπN0<KπNKπN<π2
70 15 16 63 69 syl3anbrc MK1MKπN0π2