Metamath Proof Explorer


Theorem basellem1

Description: Lemma for basel . Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014) Replace OLD theorem. (Revised ba Wolf Lammen, 18-Sep-2020.)

Ref Expression
Hypothesis basel.n N = 2 M + 1
Assertion basellem1 M K 1 M K π N 0 π 2

Proof

Step Hyp Ref Expression
1 basel.n N = 2 M + 1
2 elfznn K 1 M K
3 2 nnrpd K 1 M K +
4 pirp π +
5 rpmulcl K + π + K π +
6 3 4 5 sylancl K 1 M K π +
7 2nn 2
8 nnmulcl 2 M 2 M
9 7 8 mpan M 2 M
10 9 peano2nnd M 2 M + 1
11 1 10 eqeltrid M N
12 11 nnrpd M N +
13 rpdivcl K π + N + K π N +
14 6 12 13 syl2anr M K 1 M K π N +
15 14 rpred M K 1 M K π N
16 14 rpgt0d M K 1 M 0 < K π N
17 2 adantl M K 1 M K
18 nnmulcl K 2 K 2
19 17 7 18 sylancl M K 1 M K 2
20 19 nnred M K 1 M K 2
21 9 adantr M K 1 M 2 M
22 21 nnred M K 1 M 2 M
23 11 adantr M K 1 M N
24 23 nnred M K 1 M N
25 1 24 eqeltrrid M K 1 M 2 M + 1
26 17 nncnd M K 1 M K
27 2cn 2
28 mulcom K 2 K 2 = 2 K
29 26 27 28 sylancl M K 1 M K 2 = 2 K
30 elfzle2 K 1 M K M
31 30 adantl M K 1 M K M
32 17 nnred M K 1 M K
33 nnre M M
34 33 adantr M K 1 M M
35 2re 2
36 2pos 0 < 2
37 35 36 pm3.2i 2 0 < 2
38 37 a1i M K 1 M 2 0 < 2
39 lemul2 K M 2 0 < 2 K M 2 K 2 M
40 32 34 38 39 syl3anc M K 1 M K M 2 K 2 M
41 31 40 mpbid M K 1 M 2 K 2 M
42 29 41 eqbrtrd M K 1 M K 2 2 M
43 22 ltp1d M K 1 M 2 M < 2 M + 1
44 20 22 25 42 43 lelttrd M K 1 M K 2 < 2 M + 1
45 44 1 breqtrrdi M K 1 M K 2 < N
46 19 nngt0d M K 1 M 0 < K 2
47 23 nngt0d M K 1 M 0 < N
48 pire π
49 remulcl K π K π
50 32 48 49 sylancl M K 1 M K π
51 6 adantl M K 1 M K π +
52 51 rpgt0d M K 1 M 0 < K π
53 ltdiv2 K 2 0 < K 2 N 0 < N K π 0 < K π K 2 < N K π N < K π K 2
54 20 46 24 47 50 52 53 syl222anc M K 1 M K 2 < N K π N < K π K 2
55 45 54 mpbid M K 1 M K π N < K π K 2
56 picn π
57 56 a1i M K 1 M π
58 2cnne0 2 2 0
59 58 a1i M K 1 M 2 2 0
60 17 nnne0d M K 1 M K 0
61 divcan5 π 2 2 0 K K 0 K π K 2 = π 2
62 57 59 26 60 61 syl112anc M K 1 M K π K 2 = π 2
63 55 62 breqtrd M K 1 M K π N < π 2
64 0xr 0 *
65 rehalfcl π π 2
66 rexr π 2 π 2 *
67 48 65 66 mp2b π 2 *
68 elioo2 0 * π 2 * K π N 0 π 2 K π N 0 < K π N K π N < π 2
69 64 67 68 mp2an K π N 0 π 2 K π N 0 < K π N K π N < π 2
70 15 16 63 69 syl3anbrc M K 1 M K π N 0 π 2