Description: Lemma for basel . Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | basel.n | |
|
Assertion | basellem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basel.n | |
|
2 | elfznn | |
|
3 | 2 | nnrpd | |
4 | pirp | |
|
5 | rpmulcl | |
|
6 | 3 4 5 | sylancl | |
7 | 2nn | |
|
8 | nnmulcl | |
|
9 | 7 8 | mpan | |
10 | 9 | peano2nnd | |
11 | 1 10 | eqeltrid | |
12 | 11 | nnrpd | |
13 | rpdivcl | |
|
14 | 6 12 13 | syl2anr | |
15 | 14 | rpred | |
16 | 14 | rpgt0d | |
17 | 2 | adantl | |
18 | nnmulcl | |
|
19 | 17 7 18 | sylancl | |
20 | 19 | nnred | |
21 | 9 | adantr | |
22 | 21 | nnred | |
23 | 11 | adantr | |
24 | 23 | nnred | |
25 | 1 24 | eqeltrrid | |
26 | 17 | nncnd | |
27 | 2cn | |
|
28 | mulcom | |
|
29 | 26 27 28 | sylancl | |
30 | elfzle2 | |
|
31 | 30 | adantl | |
32 | 17 | nnred | |
33 | nnre | |
|
34 | 33 | adantr | |
35 | 2re | |
|
36 | 2pos | |
|
37 | 35 36 | pm3.2i | |
38 | 37 | a1i | |
39 | lemul2 | |
|
40 | 32 34 38 39 | syl3anc | |
41 | 31 40 | mpbid | |
42 | 29 41 | eqbrtrd | |
43 | 22 | ltp1d | |
44 | 20 22 25 42 43 | lelttrd | |
45 | 44 1 | breqtrrdi | |
46 | 19 | nngt0d | |
47 | 23 | nngt0d | |
48 | pire | |
|
49 | remulcl | |
|
50 | 32 48 49 | sylancl | |
51 | 6 | adantl | |
52 | 51 | rpgt0d | |
53 | ltdiv2 | |
|
54 | 20 46 24 47 50 52 53 | syl222anc | |
55 | 45 54 | mpbid | |
56 | picn | |
|
57 | 56 | a1i | |
58 | 2cnne0 | |
|
59 | 58 | a1i | |
60 | 17 | nnne0d | |
61 | divcan5 | |
|
62 | 57 59 26 60 61 | syl112anc | |
63 | 55 62 | breqtrd | |
64 | 0xr | |
|
65 | rehalfcl | |
|
66 | rexr | |
|
67 | 48 65 66 | mp2b | |
68 | elioo2 | |
|
69 | 64 67 68 | mp2an | |
70 | 15 16 63 69 | syl3anbrc | |