Metamath Proof Explorer


Theorem bcm1n

Description: The proportion of one binomial coefficient to another with N decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016)

Ref Expression
Assertion bcm1n K0N1N(N1K)(NK)=NKN

Proof

Step Hyp Ref Expression
1 bcp1n K0N1(N-1+1K)=(N1K)N-1+1N1+1-K
2 nnz NN
3 2 zcnd NN
4 3 adantl K0N1NN
5 1cnd K0N1N1
6 4 5 npcand K0N1NN-1+1=N
7 6 oveq1d K0N1N(N-1+1K)=(NK)
8 6 oveq1d K0N1NN1+1-K=NK
9 6 8 oveq12d K0N1NN-1+1N1+1-K=NNK
10 9 oveq2d K0N1N(N1K)N-1+1N1+1-K=(N1K)NNK
11 7 10 eqeq12d K0N1N(N-1+1K)=(N1K)N-1+1N1+1-K(NK)=(N1K)NNK
12 1 11 imbitrid K0N1NK0N1(NK)=(N1K)NNK
13 12 3impia K0N1NK0N1(NK)=(N1K)NNK
14 13 3anidm13 K0N1N(NK)=(N1K)NNK
15 elfznn0 K0N1K0
16 15 adantr K0N1NK0
17 simpr K0N1NN
18 17 nnnn0d K0N1NN0
19 elfzelz K0N1K
20 19 adantr K0N1NK
21 20 zred K0N1NK
22 2 adantl K0N1NN
23 22 zred K0N1NN
24 elfzle2 K0N1KN1
25 24 adantr K0N1NKN1
26 zltlem1 KNK<NKN1
27 19 2 26 syl2an K0N1NK<NKN1
28 25 27 mpbird K0N1NK<N
29 21 23 28 ltled K0N1NKN
30 elfz2nn0 K0NK0N0KN
31 16 18 29 30 syl3anbrc K0N1NK0N
32 bcrpcl K0N(NK)+
33 31 32 syl K0N1N(NK)+
34 33 rpcnd K0N1N(NK)
35 19 zcnd K0N1K
36 35 adantr K0N1NK
37 4 36 subcld K0N1NNK
38 36 4 negsubdi2d K0N1NKN=NK
39 21 23 resubcld K0N1NKN
40 39 recnd K0N1NKN
41 4 addlidd K0N1N0+N=N
42 28 41 breqtrrd K0N1NK<0+N
43 0red K0N1N0
44 21 23 43 ltsubaddd K0N1NKN<0K<0+N
45 42 44 mpbird K0N1NKN<0
46 45 lt0ne0d K0N1NKN0
47 40 46 negne0d K0N1NKN0
48 38 47 eqnetrrd K0N1NNK0
49 4 37 48 divcld K0N1NNNK
50 bcrpcl K0N1(N1K)+
51 50 adantr K0N1N(N1K)+
52 51 rpcnne0d K0N1N(N1K)(N1K)0
53 divmul2 (NK)NNK(N1K)(N1K)0(NK)(N1K)=NNK(NK)=(N1K)NNK
54 34 49 52 53 syl3anc K0N1N(NK)(N1K)=NNK(NK)=(N1K)NNK
55 14 54 mpbird K0N1N(NK)(N1K)=NNK
56 55 oveq2d K0N1N1(NK)(N1K)=1NNK
57 51 rpcnd K0N1N(N1K)
58 bccl2 K0N(NK)
59 31 58 syl K0N1N(NK)
60 59 nnne0d K0N1N(NK)0
61 bccl2 K0N1(N1K)
62 61 nnne0d K0N1(N1K)0
63 62 adantr K0N1N(N1K)0
64 34 57 60 63 recdivd K0N1N1(NK)(N1K)=(N1K)(NK)
65 17 nnne0d K0N1NN0
66 4 37 65 48 recdivd K0N1N1NNK=NKN
67 56 64 66 3eqtr3d K0N1N(N1K)(NK)=NKN