Metamath Proof Explorer


Theorem bcthlem1

Description: Lemma for bcth . Substitutions for the function F . (Contributed by Mario Carneiro, 9-Jan-2014)

Ref Expression
Hypotheses bcth.2 J=MetOpenD
bcthlem.4 φDCMetX
bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
Assertion bcthlem1 φABX×+CAFBCX×+2ndC<1AclsJballDCballDBMA

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 bcthlem.4 φDCMetX
3 bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
4 opabssxp xr|xXr+r<1AclsJxballDrballDBMAX×+
5 elfvdm DCMetXXdomCMet
6 2 5 syl φXdomCMet
7 reex V
8 rpssre +
9 7 8 ssexi +V
10 xpexg XdomCMet+VX×+V
11 6 9 10 sylancl φX×+V
12 ssexg xr|xXr+r<1AclsJxballDrballDBMAX×+X×+Vxr|xXr+r<1AclsJxballDrballDBMAV
13 4 11 12 sylancr φxr|xXr+r<1AclsJxballDrballDBMAV
14 oveq2 k=A1k=1A
15 14 breq2d k=Ar<1kr<1A
16 fveq2 k=AMk=MA
17 16 difeq2d k=AballDzMk=ballDzMA
18 17 sseq2d k=AclsJxballDrballDzMkclsJxballDrballDzMA
19 15 18 anbi12d k=Ar<1kclsJxballDrballDzMkr<1AclsJxballDrballDzMA
20 19 anbi2d k=AxXr+r<1kclsJxballDrballDzMkxXr+r<1AclsJxballDrballDzMA
21 20 opabbidv k=Axr|xXr+r<1kclsJxballDrballDzMk=xr|xXr+r<1AclsJxballDrballDzMA
22 fveq2 z=BballDz=ballDB
23 22 difeq1d z=BballDzMA=ballDBMA
24 23 sseq2d z=BclsJxballDrballDzMAclsJxballDrballDBMA
25 24 anbi2d z=Br<1AclsJxballDrballDzMAr<1AclsJxballDrballDBMA
26 25 anbi2d z=BxXr+r<1AclsJxballDrballDzMAxXr+r<1AclsJxballDrballDBMA
27 26 opabbidv z=Bxr|xXr+r<1AclsJxballDrballDzMA=xr|xXr+r<1AclsJxballDrballDBMA
28 21 27 3 ovmpog ABX×+xr|xXr+r<1AclsJxballDrballDBMAVAFB=xr|xXr+r<1AclsJxballDrballDBMA
29 13 28 syl3an3 ABX×+φAFB=xr|xXr+r<1AclsJxballDrballDBMA
30 29 3expa ABX×+φAFB=xr|xXr+r<1AclsJxballDrballDBMA
31 30 ancoms φABX×+AFB=xr|xXr+r<1AclsJxballDrballDBMA
32 31 eleq2d φABX×+CAFBCxr|xXr+r<1AclsJxballDrballDBMA
33 4 sseli Cxr|xXr+r<1AclsJxballDrballDBMACX×+
34 simp1 CX×+2ndC<1AclsJballDCballDBMACX×+
35 1st2nd2 CX×+C=1stC2ndC
36 35 eleq1d CX×+Cxr|xXr+r<1AclsJxballDrballDBMA1stC2ndCxr|xXr+r<1AclsJxballDrballDBMA
37 fvex 1stCV
38 fvex 2ndCV
39 eleq1 x=1stCxX1stCX
40 eleq1 r=2ndCr+2ndC+
41 39 40 bi2anan9 x=1stCr=2ndCxXr+1stCX2ndC+
42 simpr x=1stCr=2ndCr=2ndC
43 42 breq1d x=1stCr=2ndCr<1A2ndC<1A
44 oveq12 x=1stCr=2ndCxballDr=1stCballD2ndC
45 44 fveq2d x=1stCr=2ndCclsJxballDr=clsJ1stCballD2ndC
46 45 sseq1d x=1stCr=2ndCclsJxballDrballDBMAclsJ1stCballD2ndCballDBMA
47 43 46 anbi12d x=1stCr=2ndCr<1AclsJxballDrballDBMA2ndC<1AclsJ1stCballD2ndCballDBMA
48 41 47 anbi12d x=1stCr=2ndCxXr+r<1AclsJxballDrballDBMA1stCX2ndC+2ndC<1AclsJ1stCballD2ndCballDBMA
49 37 38 48 opelopaba 1stC2ndCxr|xXr+r<1AclsJxballDrballDBMA1stCX2ndC+2ndC<1AclsJ1stCballD2ndCballDBMA
50 36 49 bitrdi CX×+Cxr|xXr+r<1AclsJxballDrballDBMA1stCX2ndC+2ndC<1AclsJ1stCballD2ndCballDBMA
51 35 eleq1d CX×+CX×+1stC2ndCX×+
52 opelxp 1stC2ndCX×+1stCX2ndC+
53 51 52 bitr2di CX×+1stCX2ndC+CX×+
54 df-ov 1stCballD2ndC=ballD1stC2ndC
55 35 fveq2d CX×+ballDC=ballD1stC2ndC
56 54 55 eqtr4id CX×+1stCballD2ndC=ballDC
57 56 fveq2d CX×+clsJ1stCballD2ndC=clsJballDC
58 57 sseq1d CX×+clsJ1stCballD2ndCballDBMAclsJballDCballDBMA
59 58 anbi2d CX×+2ndC<1AclsJ1stCballD2ndCballDBMA2ndC<1AclsJballDCballDBMA
60 53 59 anbi12d CX×+1stCX2ndC+2ndC<1AclsJ1stCballD2ndCballDBMACX×+2ndC<1AclsJballDCballDBMA
61 3anass CX×+2ndC<1AclsJballDCballDBMACX×+2ndC<1AclsJballDCballDBMA
62 60 61 bitr4di CX×+1stCX2ndC+2ndC<1AclsJ1stCballD2ndCballDBMACX×+2ndC<1AclsJballDCballDBMA
63 50 62 bitrd CX×+Cxr|xXr+r<1AclsJxballDrballDBMACX×+2ndC<1AclsJballDCballDBMA
64 33 34 63 pm5.21nii Cxr|xXr+r<1AclsJxballDrballDBMACX×+2ndC<1AclsJballDCballDBMA
65 32 64 bitrdi φABX×+CAFBCX×+2ndC<1AclsJballDCballDBMA