Description: Lemma for bcth . Substitutions for the function F . (Contributed by Mario Carneiro, 9-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bcth.2 | |
|
bcthlem.4 | |
||
bcthlem.5 | |
||
Assertion | bcthlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bcth.2 | |
|
2 | bcthlem.4 | |
|
3 | bcthlem.5 | |
|
4 | opabssxp | |
|
5 | elfvdm | |
|
6 | 2 5 | syl | |
7 | reex | |
|
8 | rpssre | |
|
9 | 7 8 | ssexi | |
10 | xpexg | |
|
11 | 6 9 10 | sylancl | |
12 | ssexg | |
|
13 | 4 11 12 | sylancr | |
14 | oveq2 | |
|
15 | 14 | breq2d | |
16 | fveq2 | |
|
17 | 16 | difeq2d | |
18 | 17 | sseq2d | |
19 | 15 18 | anbi12d | |
20 | 19 | anbi2d | |
21 | 20 | opabbidv | |
22 | fveq2 | |
|
23 | 22 | difeq1d | |
24 | 23 | sseq2d | |
25 | 24 | anbi2d | |
26 | 25 | anbi2d | |
27 | 26 | opabbidv | |
28 | 21 27 3 | ovmpog | |
29 | 13 28 | syl3an3 | |
30 | 29 | 3expa | |
31 | 30 | ancoms | |
32 | 31 | eleq2d | |
33 | 4 | sseli | |
34 | simp1 | |
|
35 | 1st2nd2 | |
|
36 | 35 | eleq1d | |
37 | fvex | |
|
38 | fvex | |
|
39 | eleq1 | |
|
40 | eleq1 | |
|
41 | 39 40 | bi2anan9 | |
42 | simpr | |
|
43 | 42 | breq1d | |
44 | oveq12 | |
|
45 | 44 | fveq2d | |
46 | 45 | sseq1d | |
47 | 43 46 | anbi12d | |
48 | 41 47 | anbi12d | |
49 | 37 38 48 | opelopaba | |
50 | 36 49 | bitrdi | |
51 | 35 | eleq1d | |
52 | opelxp | |
|
53 | 51 52 | bitr2di | |
54 | df-ov | |
|
55 | 35 | fveq2d | |
56 | 54 55 | eqtr4id | |
57 | 56 | fveq2d | |
58 | 57 | sseq1d | |
59 | 58 | anbi2d | |
60 | 53 59 | anbi12d | |
61 | 3anass | |
|
62 | 60 61 | bitr4di | |
63 | 50 62 | bitrd | |
64 | 33 34 63 | pm5.21nii | |
65 | 32 64 | bitrdi | |