Description: Lemma for binomcxp . The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | binomcxplem.c | |
|
binomcxplem.k | |
||
Assertion | binomcxplemwb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.c | |
|
2 | binomcxplem.k | |
|
3 | 2 | nncnd | |
4 | 1 3 | npcand | |
5 | 4 | oveq1d | |
6 | 1 3 | subcld | |
7 | 2 | nnnn0d | |
8 | fallfaccl | |
|
9 | 1 7 8 | syl2anc | |
10 | 6 3 9 | adddird | |
11 | 5 10 | eqtr3d | |
12 | 11 | oveq1d | |
13 | 1 7 | bccval | |
14 | 13 | oveq2d | |
15 | faccl | |
|
16 | 15 | nncnd | |
17 | 7 16 | syl | |
18 | facne0 | |
|
19 | 7 18 | syl | |
20 | 1 9 17 19 | divassd | |
21 | 14 20 | eqtr4d | |
22 | 6 9 17 19 | divassd | |
23 | 22 | oveq1d | |
24 | 6 9 | mulcld | |
25 | 3 9 | mulcld | |
26 | 24 25 17 19 | divdird | |
27 | 13 | oveq2d | |
28 | nnm1nn0 | |
|
29 | 2 28 | syl | |
30 | faccl | |
|
31 | 30 | nncnd | |
32 | 29 31 | syl | |
33 | facne0 | |
|
34 | 29 33 | syl | |
35 | 2 | nnne0d | |
36 | 9 32 3 34 35 | divcan5d | |
37 | 1cnd | |
|
38 | 3 37 | npcand | |
39 | 38 | fveq2d | |
40 | 38 | oveq2d | |
41 | facp1 | |
|
42 | 29 41 | syl | |
43 | 3 32 | mulcomd | |
44 | 40 42 43 | 3eqtr4d | |
45 | 39 44 | eqtr3d | |
46 | 45 | oveq2d | |
47 | 3 37 | subcld | |
48 | 1 47 | subcld | |
49 | fallfaccl | |
|
50 | 1 29 49 | syl2anc | |
51 | 48 50 32 34 | divassd | |
52 | 38 | oveq2d | |
53 | fallfacp1 | |
|
54 | 1 29 53 | syl2anc | |
55 | 52 54 | eqtr3d | |
56 | 48 50 | mulcomd | |
57 | 55 56 | eqtr4d | |
58 | 57 | oveq1d | |
59 | 1 29 | bccval | |
60 | 59 | oveq2d | |
61 | 51 58 60 | 3eqtr4rd | |
62 | 36 46 61 | 3eqtr4rd | |
63 | 27 62 | oveq12d | |
64 | 23 26 63 | 3eqtr4rd | |
65 | 12 21 64 | 3eqtr4rd | |