Metamath Proof Explorer


Theorem binomcxplemwb

Description: Lemma for binomcxp . The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxplem.c φC
binomcxplem.k φK
Assertion binomcxplemwb φCKCC𝑐K+CK1CC𝑐K1=CCC𝑐K

Proof

Step Hyp Ref Expression
1 binomcxplem.c φC
2 binomcxplem.k φK
3 2 nncnd φK
4 1 3 npcand φC-K+K=C
5 4 oveq1d φC-K+KCK_=CCK_
6 1 3 subcld φCK
7 2 nnnn0d φK0
8 fallfaccl CK0CK_
9 1 7 8 syl2anc φCK_
10 6 3 9 adddird φC-K+KCK_=CKCK_+KCK_
11 5 10 eqtr3d φCCK_=CKCK_+KCK_
12 11 oveq1d φCCK_K!=CKCK_+KCK_K!
13 1 7 bccval φCC𝑐K=CK_K!
14 13 oveq2d φCCC𝑐K=CCK_K!
15 faccl K0K!
16 15 nncnd K0K!
17 7 16 syl φK!
18 facne0 K0K!0
19 7 18 syl φK!0
20 1 9 17 19 divassd φCCK_K!=CCK_K!
21 14 20 eqtr4d φCCC𝑐K=CCK_K!
22 6 9 17 19 divassd φCKCK_K!=CKCK_K!
23 22 oveq1d φCKCK_K!+KCK_K!=CKCK_K!+KCK_K!
24 6 9 mulcld φCKCK_
25 3 9 mulcld φKCK_
26 24 25 17 19 divdird φCKCK_+KCK_K!=CKCK_K!+KCK_K!
27 13 oveq2d φCKCC𝑐K=CKCK_K!
28 nnm1nn0 KK10
29 2 28 syl φK10
30 faccl K10K1!
31 30 nncnd K10K1!
32 29 31 syl φK1!
33 facne0 K10K1!0
34 29 33 syl φK1!0
35 2 nnne0d φK0
36 9 32 3 34 35 divcan5d φKCK_KK1!=CK_K1!
37 1cnd φ1
38 3 37 npcand φK-1+1=K
39 38 fveq2d φK-1+1!=K!
40 38 oveq2d φK1!K-1+1=K1!K
41 facp1 K10K-1+1!=K1!K-1+1
42 29 41 syl φK-1+1!=K1!K-1+1
43 3 32 mulcomd φKK1!=K1!K
44 40 42 43 3eqtr4d φK-1+1!=KK1!
45 39 44 eqtr3d φK!=KK1!
46 45 oveq2d φKCK_K!=KCK_KK1!
47 3 37 subcld φK1
48 1 47 subcld φCK1
49 fallfaccl CK10CK1_
50 1 29 49 syl2anc φCK1_
51 48 50 32 34 divassd φCK1CK1_K1!=CK1CK1_K1!
52 38 oveq2d φCK-1+1_=CK_
53 fallfacp1 CK10CK-1+1_=CK1_CK1
54 1 29 53 syl2anc φCK-1+1_=CK1_CK1
55 52 54 eqtr3d φCK_=CK1_CK1
56 48 50 mulcomd φCK1CK1_=CK1_CK1
57 55 56 eqtr4d φCK_=CK1CK1_
58 57 oveq1d φCK_K1!=CK1CK1_K1!
59 1 29 bccval φCC𝑐K1=CK1_K1!
60 59 oveq2d φCK1CC𝑐K1=CK1CK1_K1!
61 51 58 60 3eqtr4rd φCK1CC𝑐K1=CK_K1!
62 36 46 61 3eqtr4rd φCK1CC𝑐K1=KCK_K!
63 27 62 oveq12d φCKCC𝑐K+CK1CC𝑐K1=CKCK_K!+KCK_K!
64 23 26 63 3eqtr4rd φCKCC𝑐K+CK1CC𝑐K1=CKCK_+KCK_K!
65 12 21 64 3eqtr4rd φCKCC𝑐K+CK1CC𝑐K1=CCC𝑐K