Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxplem.c |
|
2 |
|
binomcxplem.k |
|
3 |
2
|
nncnd |
|
4 |
1 3
|
npcand |
|
5 |
4
|
oveq1d |
|
6 |
1 3
|
subcld |
|
7 |
2
|
nnnn0d |
|
8 |
|
fallfaccl |
|
9 |
1 7 8
|
syl2anc |
|
10 |
6 3 9
|
adddird |
|
11 |
5 10
|
eqtr3d |
|
12 |
11
|
oveq1d |
|
13 |
1 7
|
bccval |
|
14 |
13
|
oveq2d |
|
15 |
|
faccl |
|
16 |
15
|
nncnd |
|
17 |
7 16
|
syl |
|
18 |
|
facne0 |
|
19 |
7 18
|
syl |
|
20 |
1 9 17 19
|
divassd |
|
21 |
14 20
|
eqtr4d |
|
22 |
6 9 17 19
|
divassd |
|
23 |
22
|
oveq1d |
|
24 |
6 9
|
mulcld |
|
25 |
3 9
|
mulcld |
|
26 |
24 25 17 19
|
divdird |
|
27 |
13
|
oveq2d |
|
28 |
|
nnm1nn0 |
|
29 |
2 28
|
syl |
|
30 |
|
faccl |
|
31 |
30
|
nncnd |
|
32 |
29 31
|
syl |
|
33 |
|
facne0 |
|
34 |
29 33
|
syl |
|
35 |
2
|
nnne0d |
|
36 |
9 32 3 34 35
|
divcan5d |
|
37 |
|
1cnd |
|
38 |
3 37
|
npcand |
|
39 |
38
|
fveq2d |
|
40 |
38
|
oveq2d |
|
41 |
|
facp1 |
|
42 |
29 41
|
syl |
|
43 |
3 32
|
mulcomd |
|
44 |
40 42 43
|
3eqtr4d |
|
45 |
39 44
|
eqtr3d |
|
46 |
45
|
oveq2d |
|
47 |
3 37
|
subcld |
|
48 |
1 47
|
subcld |
|
49 |
|
fallfaccl |
|
50 |
1 29 49
|
syl2anc |
|
51 |
48 50 32 34
|
divassd |
|
52 |
38
|
oveq2d |
|
53 |
|
fallfacp1 |
|
54 |
1 29 53
|
syl2anc |
|
55 |
52 54
|
eqtr3d |
|
56 |
48 50
|
mulcomd |
|
57 |
55 56
|
eqtr4d |
|
58 |
57
|
oveq1d |
|
59 |
1 29
|
bccval |
|
60 |
59
|
oveq2d |
|
61 |
51 58 60
|
3eqtr4rd |
|
62 |
36 46 61
|
3eqtr4rd |
|
63 |
27 62
|
oveq12d |
|
64 |
23 26 63
|
3eqtr4rd |
|
65 |
12 21 64
|
3eqtr4rd |
|