Metamath Proof Explorer


Theorem binomcxplemwb

Description: Lemma for binomcxp . The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxplem.c φ C
binomcxplem.k φ K
Assertion binomcxplemwb φ C K C C 𝑐 K + C K 1 C C 𝑐 K 1 = C C C 𝑐 K

Proof

Step Hyp Ref Expression
1 binomcxplem.c φ C
2 binomcxplem.k φ K
3 2 nncnd φ K
4 1 3 npcand φ C - K + K = C
5 4 oveq1d φ C - K + K C K _ = C C K _
6 1 3 subcld φ C K
7 2 nnnn0d φ K 0
8 fallfaccl C K 0 C K _
9 1 7 8 syl2anc φ C K _
10 6 3 9 adddird φ C - K + K C K _ = C K C K _ + K C K _
11 5 10 eqtr3d φ C C K _ = C K C K _ + K C K _
12 11 oveq1d φ C C K _ K ! = C K C K _ + K C K _ K !
13 1 7 bccval φ C C 𝑐 K = C K _ K !
14 13 oveq2d φ C C C 𝑐 K = C C K _ K !
15 faccl K 0 K !
16 15 nncnd K 0 K !
17 7 16 syl φ K !
18 facne0 K 0 K ! 0
19 7 18 syl φ K ! 0
20 1 9 17 19 divassd φ C C K _ K ! = C C K _ K !
21 14 20 eqtr4d φ C C C 𝑐 K = C C K _ K !
22 6 9 17 19 divassd φ C K C K _ K ! = C K C K _ K !
23 22 oveq1d φ C K C K _ K ! + K C K _ K ! = C K C K _ K ! + K C K _ K !
24 6 9 mulcld φ C K C K _
25 3 9 mulcld φ K C K _
26 24 25 17 19 divdird φ C K C K _ + K C K _ K ! = C K C K _ K ! + K C K _ K !
27 13 oveq2d φ C K C C 𝑐 K = C K C K _ K !
28 nnm1nn0 K K 1 0
29 2 28 syl φ K 1 0
30 faccl K 1 0 K 1 !
31 30 nncnd K 1 0 K 1 !
32 29 31 syl φ K 1 !
33 facne0 K 1 0 K 1 ! 0
34 29 33 syl φ K 1 ! 0
35 2 nnne0d φ K 0
36 9 32 3 34 35 divcan5d φ K C K _ K K 1 ! = C K _ K 1 !
37 1cnd φ 1
38 3 37 npcand φ K - 1 + 1 = K
39 38 fveq2d φ K - 1 + 1 ! = K !
40 38 oveq2d φ K 1 ! K - 1 + 1 = K 1 ! K
41 facp1 K 1 0 K - 1 + 1 ! = K 1 ! K - 1 + 1
42 29 41 syl φ K - 1 + 1 ! = K 1 ! K - 1 + 1
43 3 32 mulcomd φ K K 1 ! = K 1 ! K
44 40 42 43 3eqtr4d φ K - 1 + 1 ! = K K 1 !
45 39 44 eqtr3d φ K ! = K K 1 !
46 45 oveq2d φ K C K _ K ! = K C K _ K K 1 !
47 3 37 subcld φ K 1
48 1 47 subcld φ C K 1
49 fallfaccl C K 1 0 C K 1 _
50 1 29 49 syl2anc φ C K 1 _
51 48 50 32 34 divassd φ C K 1 C K 1 _ K 1 ! = C K 1 C K 1 _ K 1 !
52 38 oveq2d φ C K - 1 + 1 _ = C K _
53 fallfacp1 C K 1 0 C K - 1 + 1 _ = C K 1 _ C K 1
54 1 29 53 syl2anc φ C K - 1 + 1 _ = C K 1 _ C K 1
55 52 54 eqtr3d φ C K _ = C K 1 _ C K 1
56 48 50 mulcomd φ C K 1 C K 1 _ = C K 1 _ C K 1
57 55 56 eqtr4d φ C K _ = C K 1 C K 1 _
58 57 oveq1d φ C K _ K 1 ! = C K 1 C K 1 _ K 1 !
59 1 29 bccval φ C C 𝑐 K 1 = C K 1 _ K 1 !
60 59 oveq2d φ C K 1 C C 𝑐 K 1 = C K 1 C K 1 _ K 1 !
61 51 58 60 3eqtr4rd φ C K 1 C C 𝑐 K 1 = C K _ K 1 !
62 36 46 61 3eqtr4rd φ C K 1 C C 𝑐 K 1 = K C K _ K !
63 27 62 oveq12d φ C K C C 𝑐 K + C K 1 C C 𝑐 K 1 = C K C K _ K ! + K C K _ K !
64 23 26 63 3eqtr4rd φ C K C C 𝑐 K + C K 1 C C 𝑐 K 1 = C K C K _ + K C K _ K !
65 12 21 64 3eqtr4rd φ C K C C 𝑐 K + C K 1 C C 𝑐 K 1 = C C C 𝑐 K