Description: Lemma for bj-bary1: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-bary1.a | |
|
bj-bary1.b | |
||
bj-bary1.x | |
||
bj-bary1.neq | |
||
bj-bary1.s | |
||
bj-bary1.t | |
||
Assertion | bj-bary1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bary1.a | |
|
2 | bj-bary1.b | |
|
3 | bj-bary1.x | |
|
4 | bj-bary1.neq | |
|
5 | bj-bary1.s | |
|
6 | bj-bary1.t | |
|
7 | 5 6 | pncand | |
8 | oveq1 | |
|
9 | pm5.31 | |
|
10 | 7 8 9 | sylancl | |
11 | eqtr2 | |
|
12 | 11 | eqcomd | |
13 | 10 12 | syl6 | |
14 | oveq1 | |
|
15 | 14 | oveq1d | |
16 | eqtr | |
|
17 | 15 16 | sylan2 | |
18 | 1cnd | |
|
19 | 18 6 1 | subdird | |
20 | 1 | mullidd | |
21 | 20 | oveq1d | |
22 | 19 21 | eqtrd | |
23 | 22 | oveq1d | |
24 | 17 23 | sylan9eqr | |
25 | 24 | ex | |
26 | 13 25 | sylan2d | |
27 | 6 1 | mulcld | |
28 | 6 2 | mulcld | |
29 | 1 27 28 | subadd23d | |
30 | 6 2 1 | subdid | |
31 | 30 | eqcomd | |
32 | 31 | oveq2d | |
33 | 29 32 | eqtrd | |
34 | 33 | eqeq2d | |
35 | 26 34 | sylibd | |
36 | oveq1 | |
|
37 | 2 1 | subcld | |
38 | 6 37 | mulcld | |
39 | 1 38 | pncan2d | |
40 | 39 | eqeq2d | |
41 | 36 40 | imbitrid | |
42 | eqcom | |
|
43 | 6 37 | mulcomd | |
44 | 43 | eqeq1d | |
45 | 3 1 | subcld | |
46 | 4 | necomd | |
47 | 2 1 46 | subne0d | |
48 | 37 6 45 47 | rdiv | |
49 | 48 | biimpd | |
50 | 44 49 | sylbid | |
51 | 42 50 | biimtrid | |
52 | 35 41 51 | 3syld | |