Metamath Proof Explorer


Theorem bj-bary1lem1

Description: Lemma for bj-bary1: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-bary1.a φA
bj-bary1.b φB
bj-bary1.x φX
bj-bary1.neq φAB
bj-bary1.s φS
bj-bary1.t φT
Assertion bj-bary1lem1 φX=SA+TBS+T=1T=XABA

Proof

Step Hyp Ref Expression
1 bj-bary1.a φA
2 bj-bary1.b φB
3 bj-bary1.x φX
4 bj-bary1.neq φAB
5 bj-bary1.s φS
6 bj-bary1.t φT
7 5 6 pncand φS+T-T=S
8 oveq1 S+T=1S+T-T=1T
9 pm5.31 S+T-T=SS+T=1S+T-T=1TS+T=1S+T-T=1TS+T-T=S
10 7 8 9 sylancl φS+T=1S+T-T=1TS+T-T=S
11 eqtr2 S+T-T=1TS+T-T=S1T=S
12 11 eqcomd S+T-T=1TS+T-T=SS=1T
13 10 12 syl6 φS+T=1S=1T
14 oveq1 S=1TSA=1TA
15 14 oveq1d S=1TSA+TB=1TA+TB
16 eqtr X=SA+TBSA+TB=1TA+TBX=1TA+TB
17 15 16 sylan2 X=SA+TBS=1TX=1TA+TB
18 1cnd φ1
19 18 6 1 subdird φ1TA=1ATA
20 1 mullidd φ1A=A
21 20 oveq1d φ1ATA=ATA
22 19 21 eqtrd φ1TA=ATA
23 22 oveq1d φ1TA+TB=A-TA+TB
24 17 23 sylan9eqr φX=SA+TBS=1TX=A-TA+TB
25 24 ex φX=SA+TBS=1TX=A-TA+TB
26 13 25 sylan2d φX=SA+TBS+T=1X=A-TA+TB
27 6 1 mulcld φTA
28 6 2 mulcld φTB
29 1 27 28 subadd23d φA-TA+TB=A+TB-TA
30 6 2 1 subdid φTBA=TBTA
31 30 eqcomd φTBTA=TBA
32 31 oveq2d φA+TB-TA=A+TBA
33 29 32 eqtrd φA-TA+TB=A+TBA
34 33 eqeq2d φX=A-TA+TBX=A+TBA
35 26 34 sylibd φX=SA+TBS+T=1X=A+TBA
36 oveq1 X=A+TBAXA=A+TBA-A
37 2 1 subcld φBA
38 6 37 mulcld φTBA
39 1 38 pncan2d φA+TBA-A=TBA
40 39 eqeq2d φXA=A+TBA-AXA=TBA
41 36 40 imbitrid φX=A+TBAXA=TBA
42 eqcom XA=TBATBA=XA
43 6 37 mulcomd φTBA=BAT
44 43 eqeq1d φTBA=XABAT=XA
45 3 1 subcld φXA
46 4 necomd φBA
47 2 1 46 subne0d φBA0
48 37 6 45 47 rdiv φBAT=XAT=XABA
49 48 biimpd φBAT=XAT=XABA
50 44 49 sylbid φTBA=XAT=XABA
51 42 50 biimtrid φXA=TBAT=XABA
52 35 41 51 3syld φX=SA+TBS+T=1T=XABA