Metamath Proof Explorer


Theorem blometi

Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blometi.1 X=BaseSetU
blometi.2 Y=BaseSetW
blometi.8 C=IndMetU
blometi.d D=IndMetW
blometi.6 N=UnormOpOLDW
blometi.7 B=UBLnOpW
blometi.u UNrmCVec
blometi.w WNrmCVec
Assertion blometi TBPXQXTPDTQNTPCQ

Proof

Step Hyp Ref Expression
1 blometi.1 X=BaseSetU
2 blometi.2 Y=BaseSetW
3 blometi.8 C=IndMetU
4 blometi.d D=IndMetW
5 blometi.6 N=UnormOpOLDW
6 blometi.7 B=UBLnOpW
7 blometi.u UNrmCVec
8 blometi.w WNrmCVec
9 eqid -vU=-vU
10 1 9 nvmcl UNrmCVecPXQXP-vUQX
11 7 10 mp3an1 PXQXP-vUQX
12 eqid normCVU=normCVU
13 eqid normCVW=normCVW
14 1 12 13 5 6 7 8 nmblolbi TBP-vUQXnormCVWTP-vUQNTnormCVUP-vUQ
15 11 14 sylan2 TBPXQXnormCVWTP-vUQNTnormCVUP-vUQ
16 15 3impb TBPXQXnormCVWTP-vUQNTnormCVUP-vUQ
17 1 2 6 blof UNrmCVecWNrmCVecTBT:XY
18 7 8 17 mp3an12 TBT:XY
19 18 ffvelcdmda TBPXTPY
20 19 3adant3 TBPXQXTPY
21 18 ffvelcdmda TBQXTQY
22 21 3adant2 TBPXQXTQY
23 eqid -vW=-vW
24 2 23 13 4 imsdval WNrmCVecTPYTQYTPDTQ=normCVWTP-vWTQ
25 8 24 mp3an1 TPYTQYTPDTQ=normCVWTP-vWTQ
26 20 22 25 syl2anc TBPXQXTPDTQ=normCVWTP-vWTQ
27 eqid ULnOpW=ULnOpW
28 27 6 bloln UNrmCVecWNrmCVecTBTULnOpW
29 7 8 28 mp3an12 TBTULnOpW
30 1 9 23 27 lnosub UNrmCVecWNrmCVecTULnOpWPXQXTP-vUQ=TP-vWTQ
31 7 30 mp3anl1 WNrmCVecTULnOpWPXQXTP-vUQ=TP-vWTQ
32 8 31 mpanl1 TULnOpWPXQXTP-vUQ=TP-vWTQ
33 32 3impb TULnOpWPXQXTP-vUQ=TP-vWTQ
34 29 33 syl3an1 TBPXQXTP-vUQ=TP-vWTQ
35 34 fveq2d TBPXQXnormCVWTP-vUQ=normCVWTP-vWTQ
36 26 35 eqtr4d TBPXQXTPDTQ=normCVWTP-vUQ
37 1 9 12 3 imsdval UNrmCVecPXQXPCQ=normCVUP-vUQ
38 7 37 mp3an1 PXQXPCQ=normCVUP-vUQ
39 38 3adant1 TBPXQXPCQ=normCVUP-vUQ
40 39 oveq2d TBPXQXNTPCQ=NTnormCVUP-vUQ
41 16 36 40 3brtr4d TBPXQXTPDTQNTPCQ