Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014) (Proof shortened by Mario Carneiro, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bpolycl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | eleq1d | |
3 | 2 | imbi2d | |
4 | oveq1 | |
|
5 | 4 | eleq1d | |
6 | 5 | imbi2d | |
7 | r19.21v | |
|
8 | bpolyval | |
|
9 | 8 | 3adant3 | |
10 | simp2 | |
|
11 | simp1 | |
|
12 | 10 11 | expcld | |
13 | fzfid | |
|
14 | elfzelz | |
|
15 | bccl | |
|
16 | 11 14 15 | syl2an | |
17 | 16 | nn0cnd | |
18 | oveq1 | |
|
19 | 18 | eleq1d | |
20 | 19 | rspccva | |
21 | 20 | 3ad2antl3 | |
22 | fzssp1 | |
|
23 | 11 | nn0cnd | |
24 | ax-1cn | |
|
25 | npcan | |
|
26 | 23 24 25 | sylancl | |
27 | 26 | oveq2d | |
28 | 22 27 | sseqtrid | |
29 | 28 | sselda | |
30 | fznn0sub | |
|
31 | nn0p1nn | |
|
32 | 29 30 31 | 3syl | |
33 | 32 | nncnd | |
34 | 32 | nnne0d | |
35 | 21 33 34 | divcld | |
36 | 17 35 | mulcld | |
37 | 13 36 | fsumcl | |
38 | 12 37 | subcld | |
39 | 9 38 | eqeltrd | |
40 | 39 | 3exp | |
41 | 40 | a2d | |
42 | 7 41 | biimtrid | |
43 | 3 6 42 | nn0sinds | |
44 | 43 | imp | |