Description: The binary relation form of the betweenness predicate. The statement A Btwn <. B , C >. should be informally read as " A lies on a line segment between B and C . This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | brbtwn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-btwn | |
|
2 | 1 | breqi | |
3 | opex | |
|
4 | brcnvg | |
|
5 | 3 4 | mpan2 | |
6 | 5 | 3ad2ant1 | |
7 | df-br | |
|
8 | eleq1 | |
|
9 | 8 | 3anbi1d | |
10 | fveq1 | |
|
11 | 10 | oveq2d | |
12 | 11 | oveq1d | |
13 | 12 | eqeq2d | |
14 | 13 | rexralbidv | |
15 | 9 14 | anbi12d | |
16 | 15 | rexbidv | |
17 | eleq1 | |
|
18 | 17 | 3anbi2d | |
19 | fveq1 | |
|
20 | 19 | oveq2d | |
21 | 20 | oveq2d | |
22 | 21 | eqeq2d | |
23 | 22 | rexralbidv | |
24 | 18 23 | anbi12d | |
25 | 24 | rexbidv | |
26 | eleq1 | |
|
27 | 26 | 3anbi3d | |
28 | fveq1 | |
|
29 | 28 | eqeq1d | |
30 | 29 | rexralbidv | |
31 | 27 30 | anbi12d | |
32 | 31 | rexbidv | |
33 | 16 25 32 | eloprabg | |
34 | simp1 | |
|
35 | simp1 | |
|
36 | eedimeq | |
|
37 | 34 35 36 | syl2anr | |
38 | oveq2 | |
|
39 | 38 | raleqdv | |
40 | 39 | rexbidv | |
41 | 37 40 | syl | |
42 | 41 | biimpd | |
43 | 42 | expimpd | |
44 | 43 | rexlimdvw | |
45 | eleenn | |
|
46 | 45 | 3ad2ant1 | |
47 | fveq2 | |
|
48 | 47 | eleq2d | |
49 | 47 | eleq2d | |
50 | 47 | eleq2d | |
51 | 48 49 50 | 3anbi123d | |
52 | 51 40 | anbi12d | |
53 | 52 | rspcev | |
54 | 53 | exp32 | |
55 | 46 54 | mpcom | |
56 | 44 55 | impbid | |
57 | 33 56 | bitrd | |
58 | 57 | 3comr | |
59 | 7 58 | bitrid | |
60 | 6 59 | bitrd | |
61 | 2 60 | bitrid | |