Metamath Proof Explorer


Theorem brbtwn

Description: The binary relation form of the betweenness predicate. The statement A Btwn <. B , C >. should be informally read as " A lies on a line segment between B and C . This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion brbtwn A𝔼NB𝔼NC𝔼NABtwnBCt01i1NAi=1tBi+tCi

Proof

Step Hyp Ref Expression
1 df-btwn Btwn=yzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1
2 1 breqi ABtwnBCAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1BC
3 opex BCV
4 brcnvg A𝔼NBCVAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1BCBCyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziA
5 3 4 mpan2 A𝔼NAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1BCBCyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziA
6 5 3ad2ant1 A𝔼NB𝔼NC𝔼NAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1BCBCyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziA
7 df-br BCyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziABCAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi
8 eleq1 y=By𝔼nB𝔼n
9 8 3anbi1d y=By𝔼nz𝔼nx𝔼nB𝔼nz𝔼nx𝔼n
10 fveq1 y=Byi=Bi
11 10 oveq2d y=B1tyi=1tBi
12 11 oveq1d y=B1tyi+tzi=1tBi+tzi
13 12 eqeq2d y=Bxi=1tyi+tzixi=1tBi+tzi
14 13 rexralbidv y=Bt01i1nxi=1tyi+tzit01i1nxi=1tBi+tzi
15 9 14 anbi12d y=By𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziB𝔼nz𝔼nx𝔼nt01i1nxi=1tBi+tzi
16 15 rexbidv y=Bny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzinB𝔼nz𝔼nx𝔼nt01i1nxi=1tBi+tzi
17 eleq1 z=Cz𝔼nC𝔼n
18 17 3anbi2d z=CB𝔼nz𝔼nx𝔼nB𝔼nC𝔼nx𝔼n
19 fveq1 z=Czi=Ci
20 19 oveq2d z=Ctzi=tCi
21 20 oveq2d z=C1tBi+tzi=1tBi+tCi
22 21 eqeq2d z=Cxi=1tBi+tzixi=1tBi+tCi
23 22 rexralbidv z=Ct01i1nxi=1tBi+tzit01i1nxi=1tBi+tCi
24 18 23 anbi12d z=CB𝔼nz𝔼nx𝔼nt01i1nxi=1tBi+tziB𝔼nC𝔼nx𝔼nt01i1nxi=1tBi+tCi
25 24 rexbidv z=CnB𝔼nz𝔼nx𝔼nt01i1nxi=1tBi+tzinB𝔼nC𝔼nx𝔼nt01i1nxi=1tBi+tCi
26 eleq1 x=Ax𝔼nA𝔼n
27 26 3anbi3d x=AB𝔼nC𝔼nx𝔼nB𝔼nC𝔼nA𝔼n
28 fveq1 x=Axi=Ai
29 28 eqeq1d x=Axi=1tBi+tCiAi=1tBi+tCi
30 29 rexralbidv x=At01i1nxi=1tBi+tCit01i1nAi=1tBi+tCi
31 27 30 anbi12d x=AB𝔼nC𝔼nx𝔼nt01i1nxi=1tBi+tCiB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
32 31 rexbidv x=AnB𝔼nC𝔼nx𝔼nt01i1nxi=1tBi+tCinB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
33 16 25 32 eloprabg B𝔼NC𝔼NA𝔼NBCAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzinB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
34 simp1 B𝔼nC𝔼nA𝔼nB𝔼n
35 simp1 B𝔼NC𝔼NA𝔼NB𝔼N
36 eedimeq B𝔼nB𝔼Nn=N
37 34 35 36 syl2anr B𝔼NC𝔼NA𝔼NB𝔼nC𝔼nA𝔼nn=N
38 oveq2 n=N1n=1N
39 38 raleqdv n=Ni1nAi=1tBi+tCii1NAi=1tBi+tCi
40 39 rexbidv n=Nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
41 37 40 syl B𝔼NC𝔼NA𝔼NB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
42 41 biimpd B𝔼NC𝔼NA𝔼NB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
43 42 expimpd B𝔼NC𝔼NA𝔼NB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
44 43 rexlimdvw B𝔼NC𝔼NA𝔼NnB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
45 eleenn B𝔼NN
46 45 3ad2ant1 B𝔼NC𝔼NA𝔼NN
47 fveq2 n=N𝔼n=𝔼N
48 47 eleq2d n=NB𝔼nB𝔼N
49 47 eleq2d n=NC𝔼nC𝔼N
50 47 eleq2d n=NA𝔼nA𝔼N
51 48 49 50 3anbi123d n=NB𝔼nC𝔼nA𝔼nB𝔼NC𝔼NA𝔼N
52 51 40 anbi12d n=NB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCiB𝔼NC𝔼NA𝔼Nt01i1NAi=1tBi+tCi
53 52 rspcev NB𝔼NC𝔼NA𝔼Nt01i1NAi=1tBi+tCinB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
54 53 exp32 NB𝔼NC𝔼NA𝔼Nt01i1NAi=1tBi+tCinB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
55 46 54 mpcom B𝔼NC𝔼NA𝔼Nt01i1NAi=1tBi+tCinB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCi
56 44 55 impbid B𝔼NC𝔼NA𝔼NnB𝔼nC𝔼nA𝔼nt01i1nAi=1tBi+tCit01i1NAi=1tBi+tCi
57 33 56 bitrd B𝔼NC𝔼NA𝔼NBCAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzit01i1NAi=1tBi+tCi
58 57 3comr A𝔼NB𝔼NC𝔼NBCAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzit01i1NAi=1tBi+tCi
59 7 58 bitrid A𝔼NB𝔼NC𝔼NBCyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tziAt01i1NAi=1tBi+tCi
60 6 59 bitrd A𝔼NB𝔼NC𝔼NAyzx|ny𝔼nz𝔼nx𝔼nt01i1nxi=1tyi+tzi-1BCt01i1NAi=1tBi+tCi
61 2 60 bitrid A𝔼NB𝔼NC𝔼NABtwnBCt01i1NAi=1tBi+tCi