Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | canth4.1 | |
|
canth4.2 | |
||
canth4.3 | |
||
Assertion | canthnumlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | canth4.1 | |
|
2 | canth4.2 | |
|
3 | canth4.3 | |
|
4 | f1f | |
|
5 | ssid | |
|
6 | 1 2 3 | canth4 | |
7 | 5 6 | mp3an3 | |
8 | 4 7 | sylan2 | |
9 | 8 | simp3d | |
10 | simpr | |
|
11 | 8 | simp1d | |
12 | elpw2g | |
|
13 | 12 | adantr | |
14 | 11 13 | mpbird | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 | pm3.2i | |
18 | simpl | |
|
19 | 10 4 | syl | |
20 | 19 | ffvelcdmda | |
21 | 1 18 20 2 | fpwwe | |
22 | 17 21 | mpbiri | |
23 | 22 | simpld | |
24 | 1 18 | fpwwelem | |
25 | 23 24 | mpbid | |
26 | 25 | simprld | |
27 | fvex | |
|
28 | weeq1 | |
|
29 | 27 28 | spcev | |
30 | 26 29 | syl | |
31 | ween | |
|
32 | 30 31 | sylibr | |
33 | 14 32 | elind | |
34 | 8 | simp2d | |
35 | 34 | pssssd | |
36 | 35 11 | sstrd | |
37 | elpw2g | |
|
38 | 37 | adantr | |
39 | 36 38 | mpbird | |
40 | ssnum | |
|
41 | 32 35 40 | syl2anc | |
42 | 39 41 | elind | |
43 | f1fveq | |
|
44 | 10 33 42 43 | syl12anc | |
45 | 9 44 | mpbid | |
46 | 34 | pssned | |
47 | 46 | necomd | |
48 | 47 | neneqd | |
49 | 45 48 | pm2.65da | |