| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canth4.1 |
|
| 2 |
|
canth4.2 |
|
| 3 |
|
canth4.3 |
|
| 4 |
|
f1f |
|
| 5 |
|
ssid |
|
| 6 |
1 2 3
|
canth4 |
|
| 7 |
5 6
|
mp3an3 |
|
| 8 |
4 7
|
sylan2 |
|
| 9 |
8
|
simp3d |
|
| 10 |
|
simpr |
|
| 11 |
8
|
simp1d |
|
| 12 |
|
elpw2g |
|
| 13 |
12
|
adantr |
|
| 14 |
11 13
|
mpbird |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
pm3.2i |
|
| 18 |
|
simpl |
|
| 19 |
10 4
|
syl |
|
| 20 |
19
|
ffvelcdmda |
|
| 21 |
1 18 20 2
|
fpwwe |
|
| 22 |
17 21
|
mpbiri |
|
| 23 |
22
|
simpld |
|
| 24 |
1 18
|
fpwwelem |
|
| 25 |
23 24
|
mpbid |
|
| 26 |
25
|
simprld |
|
| 27 |
|
fvex |
|
| 28 |
|
weeq1 |
|
| 29 |
27 28
|
spcev |
|
| 30 |
26 29
|
syl |
|
| 31 |
|
ween |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
14 32
|
elind |
|
| 34 |
8
|
simp2d |
|
| 35 |
34
|
pssssd |
|
| 36 |
35 11
|
sstrd |
|
| 37 |
|
elpw2g |
|
| 38 |
37
|
adantr |
|
| 39 |
36 38
|
mpbird |
|
| 40 |
|
ssnum |
|
| 41 |
32 35 40
|
syl2anc |
|
| 42 |
39 41
|
elind |
|
| 43 |
|
f1fveq |
|
| 44 |
10 33 42 43
|
syl12anc |
|
| 45 |
9 44
|
mpbid |
|
| 46 |
34
|
pssned |
|
| 47 |
46
|
necomd |
|
| 48 |
47
|
neneqd |
|
| 49 |
45 48
|
pm2.65da |
|