Metamath Proof Explorer


Theorem canthnumlem

Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)

Ref Expression
Hypotheses canth4.1 W=xr|xArx×xrWexyxFr-1y=y
canth4.2 B=domW
canth4.3 C=WB-1FB
Assertion canthnumlem AV¬F:𝒫Adomcard1-1A

Proof

Step Hyp Ref Expression
1 canth4.1 W=xr|xArx×xrWexyxFr-1y=y
2 canth4.2 B=domW
3 canth4.3 C=WB-1FB
4 f1f F:𝒫Adomcard1-1AF:𝒫AdomcardA
5 ssid 𝒫Adomcard𝒫Adomcard
6 1 2 3 canth4 AVF:𝒫AdomcardA𝒫Adomcard𝒫AdomcardBACBFB=FC
7 5 6 mp3an3 AVF:𝒫AdomcardABACBFB=FC
8 4 7 sylan2 AVF:𝒫Adomcard1-1ABACBFB=FC
9 8 simp3d AVF:𝒫Adomcard1-1AFB=FC
10 simpr AVF:𝒫Adomcard1-1AF:𝒫Adomcard1-1A
11 8 simp1d AVF:𝒫Adomcard1-1ABA
12 elpw2g AVB𝒫ABA
13 12 adantr AVF:𝒫Adomcard1-1AB𝒫ABA
14 11 13 mpbird AVF:𝒫Adomcard1-1AB𝒫A
15 eqid B=B
16 eqid WB=WB
17 15 16 pm3.2i B=BWB=WB
18 simpl AVF:𝒫Adomcard1-1AAV
19 10 4 syl AVF:𝒫Adomcard1-1AF:𝒫AdomcardA
20 19 ffvelcdmda AVF:𝒫Adomcard1-1Ax𝒫AdomcardFxA
21 1 18 20 2 fpwwe AVF:𝒫Adomcard1-1ABWWBFBBB=BWB=WB
22 17 21 mpbiri AVF:𝒫Adomcard1-1ABWWBFBB
23 22 simpld AVF:𝒫Adomcard1-1ABWWB
24 1 18 fpwwelem AVF:𝒫Adomcard1-1ABWWBBAWBB×BWBWeByBFWB-1y=y
25 23 24 mpbid AVF:𝒫Adomcard1-1ABAWBB×BWBWeByBFWB-1y=y
26 25 simprld AVF:𝒫Adomcard1-1AWBWeB
27 fvex WBV
28 weeq1 r=WBrWeBWBWeB
29 27 28 spcev WBWeBrrWeB
30 26 29 syl AVF:𝒫Adomcard1-1ArrWeB
31 ween BdomcardrrWeB
32 30 31 sylibr AVF:𝒫Adomcard1-1ABdomcard
33 14 32 elind AVF:𝒫Adomcard1-1AB𝒫Adomcard
34 8 simp2d AVF:𝒫Adomcard1-1ACB
35 34 pssssd AVF:𝒫Adomcard1-1ACB
36 35 11 sstrd AVF:𝒫Adomcard1-1ACA
37 elpw2g AVC𝒫ACA
38 37 adantr AVF:𝒫Adomcard1-1AC𝒫ACA
39 36 38 mpbird AVF:𝒫Adomcard1-1AC𝒫A
40 ssnum BdomcardCBCdomcard
41 32 35 40 syl2anc AVF:𝒫Adomcard1-1ACdomcard
42 39 41 elind AVF:𝒫Adomcard1-1AC𝒫Adomcard
43 f1fveq F:𝒫Adomcard1-1AB𝒫AdomcardC𝒫AdomcardFB=FCB=C
44 10 33 42 43 syl12anc AVF:𝒫Adomcard1-1AFB=FCB=C
45 9 44 mpbid AVF:𝒫Adomcard1-1AB=C
46 34 pssned AVF:𝒫Adomcard1-1ACB
47 46 necomd AVF:𝒫Adomcard1-1ABC
48 47 neneqd AVF:𝒫Adomcard1-1A¬B=C
49 45 48 pm2.65da AV¬F:𝒫Adomcard1-1A