| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | cantnfp1.g |  | 
						
							| 5 |  | cantnfp1.x |  | 
						
							| 6 |  | cantnfp1.y |  | 
						
							| 7 |  | cantnfp1.s |  | 
						
							| 8 |  | cantnfp1.f |  | 
						
							| 9 |  | onelon |  | 
						
							| 10 | 3 5 9 | syl2anc |  | 
						
							| 11 |  | eloni |  | 
						
							| 12 |  | ordirr |  | 
						
							| 13 | 10 11 12 | 3syl |  | 
						
							| 14 |  | fvex |  | 
						
							| 15 |  | dif1o |  | 
						
							| 16 | 14 15 | mpbiran |  | 
						
							| 17 | 1 2 3 | cantnfs |  | 
						
							| 18 | 4 17 | mpbid |  | 
						
							| 19 | 18 | simpld |  | 
						
							| 20 | 19 | ffnd |  | 
						
							| 21 |  | 0ex |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 |  | elsuppfn |  | 
						
							| 24 | 20 3 22 23 | syl3anc |  | 
						
							| 25 | 16 | bicomi |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 26 | anbi2d |  | 
						
							| 28 | 24 27 | bitrd |  | 
						
							| 29 | 7 | sseld |  | 
						
							| 30 | 28 29 | sylbird |  | 
						
							| 31 | 5 30 | mpand |  | 
						
							| 32 | 16 31 | biimtrrid |  | 
						
							| 33 | 32 | necon1bd |  | 
						
							| 34 | 13 33 | mpd |  | 
						
							| 35 | 34 | ad3antrrr |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 36 | fveq2d |  | 
						
							| 38 |  | simpllr |  | 
						
							| 39 | 35 37 38 | 3eqtr4rd |  | 
						
							| 40 |  | eqidd |  | 
						
							| 41 | 39 40 | ifeqda |  | 
						
							| 42 | 41 | mpteq2dva |  | 
						
							| 43 | 8 42 | eqtrid |  | 
						
							| 44 | 19 | feqmptd |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 43 45 | eqtr4d |  | 
						
							| 47 | 4 | adantr |  | 
						
							| 48 | 46 47 | eqeltrd |  | 
						
							| 49 |  | oecl |  | 
						
							| 50 | 2 3 49 | syl2anc |  | 
						
							| 51 | 1 2 3 | cantnff |  | 
						
							| 52 | 51 4 | ffvelcdmd |  | 
						
							| 53 |  | onelon |  | 
						
							| 54 | 50 52 53 | syl2anc |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 |  | oa0r |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 |  | oveq2 |  | 
						
							| 59 |  | oecl |  | 
						
							| 60 | 2 10 59 | syl2anc |  | 
						
							| 61 |  | om0 |  | 
						
							| 62 | 60 61 | syl |  | 
						
							| 63 | 58 62 | sylan9eqr |  | 
						
							| 64 | 63 | oveq1d |  | 
						
							| 65 | 46 | fveq2d |  | 
						
							| 66 | 57 64 65 | 3eqtr4rd |  | 
						
							| 67 | 48 66 | jca |  | 
						
							| 68 | 2 | adantr |  | 
						
							| 69 | 3 | adantr |  | 
						
							| 70 | 4 | adantr |  | 
						
							| 71 | 5 | adantr |  | 
						
							| 72 | 6 | adantr |  | 
						
							| 73 | 7 | adantr |  | 
						
							| 74 | 1 68 69 70 71 72 73 8 | cantnfp1lem1 |  | 
						
							| 75 |  | onelon |  | 
						
							| 76 | 2 6 75 | syl2anc |  | 
						
							| 77 |  | on0eln0 |  | 
						
							| 78 | 76 77 | syl |  | 
						
							| 79 | 78 | biimpar |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 |  | eqid |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 | 1 68 69 70 71 72 73 8 79 80 81 82 83 | cantnfp1lem3 |  | 
						
							| 85 | 74 84 | jca |  | 
						
							| 86 | 67 85 | pm2.61dane |  |