Metamath Proof Explorer


Theorem caragendifcl

Description: The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragendifcl.o φOOutMeas
caragendifcl.s S=CaraGenO
caragendifcl.e φES
Assertion caragendifcl φSES

Proof

Step Hyp Ref Expression
1 caragendifcl.o φOOutMeas
2 caragendifcl.s S=CaraGenO
3 caragendifcl.e φES
4 eqid domO=domO
5 2 caragenss OOutMeasSdomO
6 1 5 syl φSdomO
7 6 unissd φSdomO
8 7 ssdifssd φSEdomO
9 2 fvexi SV
10 9 uniex SV
11 difexg SVSEV
12 10 11 ax-mp SEV
13 12 a1i φSEV
14 elpwg SEVSE𝒫domOSEdomO
15 13 14 syl φSE𝒫domOSEdomO
16 8 15 mpbird φSE𝒫domO
17 elpwi a𝒫domOadomO
18 17 adantl φa𝒫domOadomO
19 1 2 caragenuni φS=domO
20 19 eqcomd φdomO=S
21 20 adantr φa𝒫domOdomO=S
22 18 21 sseqtrd φa𝒫domOaS
23 difin2 aSaE=SEa
24 22 23 syl φa𝒫domOaE=SEa
25 incom SEa=aSE
26 25 a1i φa𝒫domOSEa=aSE
27 24 26 eqtr2d φa𝒫domOaSE=aE
28 27 fveq2d φa𝒫domOOaSE=OaE
29 22 ssdifd φa𝒫domOaESE
30 sscon aESEaSEaaE
31 29 30 syl φa𝒫domOaSEaaE
32 dfin4 aE=aaE
33 32 a1i φa𝒫domOaE=aaE
34 eqimss2 aE=aaEaaEaE
35 33 34 syl φa𝒫domOaaEaE
36 31 35 sstrd φa𝒫domOaSEaE
37 elinel1 xaExa
38 elinel2 xaExE
39 elndif xE¬xSE
40 38 39 syl xaE¬xSE
41 37 40 eldifd xaExaSE
42 41 ssriv aEaSE
43 42 a1i φa𝒫domOaEaSE
44 36 43 eqssd φa𝒫domOaSE=aE
45 44 fveq2d φa𝒫domOOaSE=OaE
46 28 45 oveq12d φa𝒫domOOaSE+𝑒OaSE=OaE+𝑒OaE
47 iccssxr 0+∞*
48 1 adantr φa𝒫domOOOutMeas
49 18 ssdifssd φa𝒫domOaEdomO
50 48 4 49 omecl φa𝒫domOOaE0+∞
51 47 50 sselid φa𝒫domOOaE*
52 ssinss1 adomOaEdomO
53 17 52 syl a𝒫domOaEdomO
54 53 adantl φa𝒫domOaEdomO
55 48 4 54 omecl φa𝒫domOOaE0+∞
56 47 55 sselid φa𝒫domOOaE*
57 51 56 xaddcomd φa𝒫domOOaE+𝑒OaE=OaE+𝑒OaE
58 1 2 caragenel φESE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
59 3 58 mpbid φE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
60 59 simprd φa𝒫domOOaE+𝑒OaE=Oa
61 60 r19.21bi φa𝒫domOOaE+𝑒OaE=Oa
62 46 57 61 3eqtrd φa𝒫domOOaSE+𝑒OaSE=Oa
63 1 4 2 16 62 carageneld φSES