Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of Monk1 p. 133. (Contributed by Mario Carneiro, 20-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | carduni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssonuni | |
|
2 | fveq2 | |
|
3 | id | |
|
4 | 2 3 | eqeq12d | |
5 | 4 | rspcv | |
6 | cardon | |
|
7 | eleq1 | |
|
8 | 6 7 | mpbii | |
9 | 5 8 | syl6com | |
10 | 9 | ssrdv | |
11 | 1 10 | impel | |
12 | cardonle | |
|
13 | 11 12 | syl | |
14 | cardon | |
|
15 | 14 | onirri | |
16 | eluni | |
|
17 | elssuni | |
|
18 | ssdomg | |
|
19 | 18 | adantl | |
20 | 17 19 | syl5 | |
21 | id | |
|
22 | onenon | |
|
23 | 6 22 | ax-mp | |
24 | 21 23 | eqeltrrdi | |
25 | onenon | |
|
26 | carddom2 | |
|
27 | 24 25 26 | syl2an | |
28 | 20 27 | sylibrd | |
29 | sseq1 | |
|
30 | 29 | adantr | |
31 | 28 30 | sylibd | |
32 | ssel | |
|
33 | 31 32 | syl6 | |
34 | 33 | ex | |
35 | 34 | com3r | |
36 | 5 35 | syld | |
37 | 36 | com4r | |
38 | 37 | imp | |
39 | 38 | exlimiv | |
40 | 16 39 | sylbi | |
41 | 40 | com13 | |
42 | 41 | imp | |
43 | 11 42 | sylancom | |
44 | 15 43 | mtoi | |
45 | 14 | onordi | |
46 | eloni | |
|
47 | 11 46 | syl | |
48 | ordtri4 | |
|
49 | 45 47 48 | sylancr | |
50 | 13 44 49 | mpbir2and | |
51 | 50 | ex | |