Metamath Proof Explorer


Theorem carduni

Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of Monk1 p. 133. (Contributed by Mario Carneiro, 20-Jan-2013)

Ref Expression
Assertion carduni AVxAcardx=xcardA=A

Proof

Step Hyp Ref Expression
1 ssonuni AVAOnAOn
2 fveq2 x=ycardx=cardy
3 id x=yx=y
4 2 3 eqeq12d x=ycardx=xcardy=y
5 4 rspcv yAxAcardx=xcardy=y
6 cardon cardyOn
7 eleq1 cardy=ycardyOnyOn
8 6 7 mpbii cardy=yyOn
9 5 8 syl6com xAcardx=xyAyOn
10 9 ssrdv xAcardx=xAOn
11 1 10 impel AVxAcardx=xAOn
12 cardonle AOncardAA
13 11 12 syl AVxAcardx=xcardAA
14 cardon cardAOn
15 14 onirri ¬cardAcardA
16 eluni cardAAycardAyyA
17 elssuni yAyA
18 ssdomg AOnyAyA
19 18 adantl cardy=yAOnyAyA
20 17 19 syl5 cardy=yAOnyAyA
21 id cardy=ycardy=y
22 onenon cardyOncardydomcard
23 6 22 ax-mp cardydomcard
24 21 23 eqeltrrdi cardy=yydomcard
25 onenon AOnAdomcard
26 carddom2 ydomcardAdomcardcardycardAyA
27 24 25 26 syl2an cardy=yAOncardycardAyA
28 20 27 sylibrd cardy=yAOnyAcardycardA
29 sseq1 cardy=ycardycardAycardA
30 29 adantr cardy=yAOncardycardAycardA
31 28 30 sylibd cardy=yAOnyAycardA
32 ssel ycardAcardAycardAcardA
33 31 32 syl6 cardy=yAOnyAcardAycardAcardA
34 33 ex cardy=yAOnyAcardAycardAcardA
35 34 com3r yAcardy=yAOncardAycardAcardA
36 5 35 syld yAxAcardx=xAOncardAycardAcardA
37 36 com4r cardAyyAxAcardx=xAOncardAcardA
38 37 imp cardAyyAxAcardx=xAOncardAcardA
39 38 exlimiv ycardAyyAxAcardx=xAOncardAcardA
40 16 39 sylbi cardAAxAcardx=xAOncardAcardA
41 40 com13 AOnxAcardx=xcardAAcardAcardA
42 41 imp AOnxAcardx=xcardAAcardAcardA
43 11 42 sylancom AVxAcardx=xcardAAcardAcardA
44 15 43 mtoi AVxAcardx=x¬cardAA
45 14 onordi OrdcardA
46 eloni AOnOrdA
47 11 46 syl AVxAcardx=xOrdA
48 ordtri4 OrdcardAOrdAcardA=AcardAA¬cardAA
49 45 47 48 sylancr AVxAcardx=xcardA=AcardAA¬cardAA
50 13 44 49 mpbir2and AVxAcardx=xcardA=A
51 50 ex AVxAcardx=xcardA=A