Metamath Proof Explorer


Theorem catcfucclOLD

Description: Obsolete proof of catcfuccl as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses catcfuccl.c C=CatCatU
catcfuccl.b B=BaseC
catcfuccl.o Q=XFuncCatY
catcfuccl.u φUWUni
catcfuccl.1 φωU
catcfuccl.x φXB
catcfuccl.y φYB
Assertion catcfucclOLD φQB

Proof

Step Hyp Ref Expression
1 catcfuccl.c C=CatCatU
2 catcfuccl.b B=BaseC
3 catcfuccl.o Q=XFuncCatY
4 catcfuccl.u φUWUni
5 catcfuccl.1 φωU
6 catcfuccl.x φXB
7 catcfuccl.y φYB
8 eqid XFuncY=XFuncY
9 eqid XNatY=XNatY
10 eqid BaseX=BaseX
11 eqid compY=compY
12 1 2 4 catcbas φB=UCat
13 6 12 eleqtrd φXUCat
14 13 elin2d φXCat
15 7 12 eleqtrd φYUCat
16 15 elin2d φYCat
17 eqidd φvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax=vXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax
18 3 8 9 10 11 14 16 17 fucval φQ=BasendxXFuncYHomndxXNatYcompndxvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax
19 df-base Base=Slot1
20 4 5 wunndx φndxU
21 19 4 20 wunstr φBasendxU
22 13 elin1d φXU
23 15 elin1d φYU
24 4 22 23 wunfunc φXFuncYU
25 4 21 24 wunop φBasendxXFuncYU
26 df-hom Hom=Slot14
27 26 4 20 wunstr φHomndxU
28 4 22 23 wunnat φXNatYU
29 4 27 28 wunop φHomndxXNatYU
30 df-cco comp=Slot15
31 30 4 20 wunstr φcompndxU
32 4 24 24 wunxp φXFuncY×XFuncYU
33 4 32 24 wunxp φXFuncY×XFuncY×XFuncYU
34 30 4 23 wunstr φcompYU
35 4 34 wunrn φrancompYU
36 4 35 wununi φrancompYU
37 4 36 wunrn φranrancompYU
38 4 37 wununi φranrancompYU
39 4 38 wunpw φ𝒫ranrancompYU
40 19 4 22 wunstr φBaseXU
41 4 39 40 wunmap φ𝒫ranrancompYBaseXU
42 4 28 wunrn φranXNatYU
43 4 42 wununi φranXNatYU
44 4 43 43 wunxp φranXNatY×ranXNatYU
45 4 41 44 wunpm φ𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatYU
46 fvex 1stvV
47 fvex 2ndvV
48 ovex 𝒫ranrancompYBaseXV
49 ovex XNatYV
50 49 rnex ranXNatYV
51 50 uniex ranXNatYV
52 51 51 xpex ranXNatY×ranXNatYV
53 eqid xBaseXbx1stfx1stgxcompY1sthxax=xBaseXbx1stfx1stgxcompY1sthxax
54 ovssunirn bx1stfx1stgxcompY1sthxaxran1stfx1stgxcompY1sthx
55 ovssunirn 1stfx1stgxcompY1sthxrancompY
56 rnss 1stfx1stgxcompY1sthxrancompYran1stfx1stgxcompY1sthxranrancompY
57 uniss ran1stfx1stgxcompY1sthxranrancompYran1stfx1stgxcompY1sthxranrancompY
58 55 56 57 mp2b ran1stfx1stgxcompY1sthxranrancompY
59 54 58 sstri bx1stfx1stgxcompY1sthxaxranrancompY
60 ovex bx1stfx1stgxcompY1sthxaxV
61 60 elpw bx1stfx1stgxcompY1sthxax𝒫ranrancompYbx1stfx1stgxcompY1sthxaxranrancompY
62 59 61 mpbir bx1stfx1stgxcompY1sthxax𝒫ranrancompY
63 62 a1i xBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompY
64 53 63 fmpti xBaseXbx1stfx1stgxcompY1sthxax:BaseX𝒫ranrancompY
65 fvex compYV
66 65 rnex rancompYV
67 66 uniex rancompYV
68 67 rnex ranrancompYV
69 68 uniex ranrancompYV
70 69 pwex 𝒫ranrancompYV
71 fvex BaseXV
72 70 71 elmap xBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseXxBaseXbx1stfx1stgxcompY1sthxax:BaseX𝒫ranrancompY
73 64 72 mpbir xBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX
74 73 rgen2w bgXNatYhafXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX
75 eqid bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax=bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax
76 75 fmpo bgXNatYhafXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseXbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:gXNatYh×fXNatYg𝒫ranrancompYBaseX
77 74 76 mpbi bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:gXNatYh×fXNatYg𝒫ranrancompYBaseX
78 ovssunirn gXNatYhranXNatY
79 ovssunirn fXNatYgranXNatY
80 xpss12 gXNatYhranXNatYfXNatYgranXNatYgXNatYh×fXNatYgranXNatY×ranXNatY
81 78 79 80 mp2an gXNatYh×fXNatYgranXNatY×ranXNatY
82 elpm2r 𝒫ranrancompYBaseXVranXNatY×ranXNatYVbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:gXNatYh×fXNatYg𝒫ranrancompYBaseXgXNatYh×fXNatYgranXNatY×ranXNatYbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
83 48 52 77 81 82 mp4an bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
84 83 sbcth 2ndvV[˙2ndv/g]˙bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
85 sbcel1g 2ndvV[˙2ndv/g]˙bgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
86 84 85 mpbid 2ndvV2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
87 47 86 ax-mp 2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
88 87 sbcth 1stvV[˙1stv/f]˙2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
89 sbcel1g 1stvV[˙1stv/f]˙2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
90 88 89 mpbid 1stvV1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
91 46 90 ax-mp 1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
92 91 rgen2w vXFuncY×XFuncYhXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
93 eqid vXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax=vXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax
94 93 fmpo vXFuncY×XFuncYhXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatYvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:XFuncY×XFuncY×XFuncY𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
95 92 94 mpbi vXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:XFuncY×XFuncY×XFuncY𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
96 95 a1i φvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxax:XFuncY×XFuncY×XFuncY𝒫ranrancompYBaseX𝑝𝑚ranXNatY×ranXNatY
97 4 33 45 96 wunf φvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxaxU
98 4 31 97 wunop φcompndxvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxaxU
99 4 25 29 98 wuntp φBasendxXFuncYHomndxXNatYcompndxvXFuncY×XFuncY,hXFuncY1stv/f2ndv/gbgXNatYh,afXNatYgxBaseXbx1stfx1stgxcompY1sthxaxU
100 18 99 eqeltrd φQU
101 3 14 16 fuccat φQCat
102 100 101 elind φQUCat
103 102 12 eleqtrrd φQB