Metamath Proof Explorer


Theorem caubnd

Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 14-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z=M
Assertion caubnd kZFkx+jZkjFkFj<xykZFk<y

Proof

Step Hyp Ref Expression
1 cau3.1 Z=M
2 abscl FkFk
3 2 ralimi kZFkkZFk
4 1 r19.29uz kZFkjZkjFkFj<xjZkjFkFkFj<x
5 4 ex kZFkjZkjFkFj<xjZkjFkFkFj<x
6 5 ralimdv kZFkx+jZkjFkFj<xx+jZkjFkFkFj<x
7 1 caubnd2 x+jZkjFkFkFj<xzjZkjFk<z
8 6 7 syl6 kZFkx+jZkjFkFj<xzjZkjFk<z
9 fzssuz MjM
10 9 1 sseqtrri MjZ
11 ssralv MjZkZFkkMjFk
12 10 11 ax-mp kZFkkMjFk
13 fzfi MjFin
14 fimaxre3 MjFinkMjFkxkMjFkx
15 13 14 mpan kMjFkxkMjFkx
16 peano2re xx+1
17 16 adantl kMjFkxx+1
18 ltp1 xx<x+1
19 18 adantl Fkxx<x+1
20 16 adantl Fkxx+1
21 lelttr Fkxx+1Fkxx<x+1Fk<x+1
22 20 21 mpd3an3 FkxFkxx<x+1Fk<x+1
23 19 22 mpan2d FkxFkxFk<x+1
24 23 expcom xFkFkxFk<x+1
25 24 ralimdv xkMjFkkMjFkxFk<x+1
26 25 impcom kMjFkxkMjFkxFk<x+1
27 ralim kMjFkxFk<x+1kMjFkxkMjFk<x+1
28 26 27 syl kMjFkxkMjFkxkMjFk<x+1
29 brralrspcev x+1kMjFk<x+1wkMjFk<w
30 17 28 29 syl6an kMjFkxkMjFkxwkMjFk<w
31 30 rexlimdva kMjFkxkMjFkxwkMjFk<w
32 15 31 mpd kMjFkwkMjFk<w
33 12 32 syl kZFkwkMjFk<w
34 max1 wzwifwzzw
35 34 3adant3 wzFkwifwzzw
36 simp3 wzFkFk
37 simp1 wzFkw
38 ifcl zwifwzzw
39 38 ancoms wzifwzzw
40 39 3adant3 wzFkifwzzw
41 ltletr FkwifwzzwFk<wwifwzzwFk<ifwzzw
42 36 37 40 41 syl3anc wzFkFk<wwifwzzwFk<ifwzzw
43 35 42 mpan2d wzFkFk<wFk<ifwzzw
44 max2 wzzifwzzw
45 44 3adant3 wzFkzifwzzw
46 simp2 wzFkz
47 ltletr FkzifwzzwFk<zzifwzzwFk<ifwzzw
48 36 46 40 47 syl3anc wzFkFk<zzifwzzwFk<ifwzzw
49 45 48 mpan2d wzFkFk<zFk<ifwzzw
50 43 49 jaod wzFkFk<wFk<zFk<ifwzzw
51 50 3expia wzFkFk<wFk<zFk<ifwzzw
52 51 ralimdv wzkZFkkZFk<wFk<zFk<ifwzzw
53 ralim kZFk<wFk<zFk<ifwzzwkZFk<wFk<zkZFk<ifwzzw
54 52 53 syl6 wzkZFkkZFk<wFk<zkZFk<ifwzzw
55 brralrspcev ifwzzwkZFk<ifwzzwykZFk<y
56 55 ex ifwzzwkZFk<ifwzzwykZFk<y
57 39 56 syl wzkZFk<ifwzzwykZFk<y
58 54 57 syl6d wzkZFkkZFk<wFk<zykZFk<y
59 uzssz M
60 1 59 eqsstri Z
61 60 sseli kZk
62 60 sseli jZj
63 uztric kjjkkj
64 61 62 63 syl2anr jZkZjkkj
65 simpr jZkZkZ
66 65 1 eleqtrdi jZkZkM
67 elfzuzb kMjkMjk
68 67 baib kMkMjjk
69 66 68 syl jZkZkMjjk
70 69 orbi1d jZkZkMjkjjkkj
71 64 70 mpbird jZkZkMjkj
72 71 ex jZkZkMjkj
73 pm3.48 kMjFk<wkjFk<zkMjkjFk<wFk<z
74 72 73 syl9 jZkMjFk<wkjFk<zkZFk<wFk<z
75 74 alimdv jZkkMjFk<wkjFk<zkkZFk<wFk<z
76 df-ral kMjFk<wkkMjFk<w
77 df-ral kjFk<zkkjFk<z
78 76 77 anbi12i kMjFk<wkjFk<zkkMjFk<wkkjFk<z
79 19.26 kkMjFk<wkjFk<zkkMjFk<wkkjFk<z
80 78 79 bitr4i kMjFk<wkjFk<zkkMjFk<wkjFk<z
81 df-ral kZFk<wFk<zkkZFk<wFk<z
82 75 80 81 3imtr4g jZkMjFk<wkjFk<zkZFk<wFk<z
83 82 3impib jZkMjFk<wkjFk<zkZFk<wFk<z
84 83 imim1i kZFk<wFk<zykZFk<yjZkMjFk<wkjFk<zykZFk<y
85 84 3expd kZFk<wFk<zykZFk<yjZkMjFk<wkjFk<zykZFk<y
86 58 85 syl6 wzkZFkjZkMjFk<wkjFk<zykZFk<y
87 86 com23 wzjZkZFkkMjFk<wkjFk<zykZFk<y
88 87 expimpd wzjZkZFkkMjFk<wkjFk<zykZFk<y
89 88 com3r kZFkwzjZkMjFk<wkjFk<zykZFk<y
90 89 com34 kZFkwkMjFk<wzjZkjFk<zykZFk<y
91 90 rexlimdv kZFkwkMjFk<wzjZkjFk<zykZFk<y
92 33 91 mpd kZFkzjZkjFk<zykZFk<y
93 92 rexlimdvv kZFkzjZkjFk<zykZFk<y
94 3 8 93 sylsyld kZFkx+jZkjFkFj<xykZFk<y
95 94 imp kZFkx+jZkjFkFj<xykZFk<y