Metamath Proof Explorer


Theorem causs

Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008) (Revised by Mario Carneiro, 30-Dec-2013)

Ref Expression
Assertion causs D∞MetXF:YFCauDFCauDY×Y

Proof

Step Hyp Ref Expression
1 caufpm D∞MetXFCauDFX𝑝𝑚
2 elfvdm D∞MetXXdom∞Met
3 cnex V
4 elpmg Xdom∞MetVFX𝑝𝑚FunFF×X
5 2 3 4 sylancl D∞MetXFX𝑝𝑚FunFF×X
6 5 biimpa D∞MetXFX𝑝𝑚FunFF×X
7 1 6 syldan D∞MetXFCauDFunFF×X
8 rnss F×XranFran×X
9 7 8 simpl2im D∞MetXFCauDranFran×X
10 rnxpss ran×XX
11 9 10 sstrdi D∞MetXFCauDranFX
12 11 adantlr D∞MetXF:YFCauDranFX
13 frn F:YranFY
14 13 ad2antlr D∞MetXF:YFCauDranFY
15 12 14 ssind D∞MetXF:YFCauDranFXY
16 15 ex D∞MetXF:YFCauDranFXY
17 xmetres D∞MetXDY×Y∞MetXY
18 caufpm DY×Y∞MetXYFCauDY×YFXY𝑝𝑚
19 17 18 sylan D∞MetXFCauDY×YFXY𝑝𝑚
20 inex1g Xdom∞MetXYV
21 2 20 syl D∞MetXXYV
22 elpmg XYVVFXY𝑝𝑚FunFF×XY
23 21 3 22 sylancl D∞MetXFXY𝑝𝑚FunFF×XY
24 23 biimpa D∞MetXFXY𝑝𝑚FunFF×XY
25 19 24 syldan D∞MetXFCauDY×YFunFF×XY
26 rnss F×XYranFran×XY
27 25 26 simpl2im D∞MetXFCauDY×YranFran×XY
28 rnxpss ran×XYXY
29 27 28 sstrdi D∞MetXFCauDY×YranFXY
30 29 ex D∞MetXFCauDY×YranFXY
31 30 adantr D∞MetXF:YFCauDY×YranFXY
32 ffn F:YFFn
33 df-f F:XYFFnranFXY
34 33 simplbi2 FFnranFXYF:XY
35 32 34 syl F:YranFXYF:XY
36 inss2 XYY
37 36 a1i D∞MetXXYY
38 fss F:XYXYYF:Y
39 37 38 sylan2 F:XYD∞MetXF:Y
40 39 ancoms D∞MetXF:XYF:Y
41 ffvelcdm F:YyFyY
42 41 adantr F:YyzyFyY
43 eluznn yzyz
44 ffvelcdm F:YzFzY
45 43 44 sylan2 F:YyzyFzY
46 45 anassrs F:YyzyFzY
47 42 46 ovresd F:YyzyFyDY×YFz=FyDFz
48 47 breq1d F:YyzyFyDY×YFz<xFyDFz<x
49 48 ralbidva F:YyzyFyDY×YFz<xzyFyDFz<x
50 49 rexbidva F:YyzyFyDY×YFz<xyzyFyDFz<x
51 50 ralbidv F:Yx+yzyFyDY×YFz<xx+yzyFyDFz<x
52 40 51 syl D∞MetXF:XYx+yzyFyDY×YFz<xx+yzyFyDFz<x
53 nnuz =1
54 17 adantr D∞MetXF:XYDY×Y∞MetXY
55 1zzd D∞MetXF:XY1
56 eqidd D∞MetXF:XYzFz=Fz
57 eqidd D∞MetXF:XYyFy=Fy
58 simpr D∞MetXF:XYF:XY
59 53 54 55 56 57 58 iscauf D∞MetXF:XYFCauDY×Yx+yzyFyDY×YFz<x
60 simpl D∞MetXF:XYD∞MetX
61 id F:XYF:XY
62 inss1 XYX
63 62 a1i D∞MetXXYX
64 fss F:XYXYXF:X
65 61 63 64 syl2anr D∞MetXF:XYF:X
66 53 60 55 56 57 65 iscauf D∞MetXF:XYFCauDx+yzyFyDFz<x
67 52 59 66 3bitr4rd D∞MetXF:XYFCauDFCauDY×Y
68 67 ex D∞MetXF:XYFCauDFCauDY×Y
69 35 68 sylan9r D∞MetXF:YranFXYFCauDFCauDY×Y
70 16 31 69 pm5.21ndd D∞MetXF:YFCauDFCauDY×Y