Description: Lemma for cdj3i . The first-component function S is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdj3lem2.1 | |
|
cdj3lem2.2 | |
||
cdj3lem2.3 | |
||
Assertion | cdj3lem2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | |
|
2 | cdj3lem2.2 | |
|
3 | cdj3lem2.3 | |
|
4 | 1 2 | cdj3lem1 | |
5 | 1 2 | shseli | |
6 | 5 | biimpi | |
7 | fveq2 | |
|
8 | 7 | oveq1d | |
9 | fvoveq1 | |
|
10 | 9 | oveq2d | |
11 | 8 10 | breq12d | |
12 | fveq2 | |
|
13 | 12 | oveq2d | |
14 | oveq2 | |
|
15 | 14 | fveq2d | |
16 | 15 | oveq2d | |
17 | 13 16 | breq12d | |
18 | 11 17 | rspc2v | |
19 | 1 2 3 | cdj3lem2 | |
20 | 19 | 3expa | |
21 | 20 | fveq2d | |
22 | 21 | ad2ant2r | |
23 | 2 | sheli | |
24 | normge0 | |
|
25 | 23 24 | syl | |
26 | 25 | adantl | |
27 | 1 | sheli | |
28 | normcl | |
|
29 | 27 28 | syl | |
30 | normcl | |
|
31 | 23 30 | syl | |
32 | addge01 | |
|
33 | 29 31 32 | syl2an | |
34 | 26 33 | mpbid | |
35 | 34 | adantr | |
36 | 29 | ad2antrr | |
37 | readdcl | |
|
38 | 29 31 37 | syl2an | |
39 | 38 | adantr | |
40 | hvaddcl | |
|
41 | 27 23 40 | syl2an | |
42 | normcl | |
|
43 | 41 42 | syl | |
44 | remulcl | |
|
45 | 43 44 | sylan2 | |
46 | 45 | ancoms | |
47 | letr | |
|
48 | 36 39 46 47 | syl3anc | |
49 | 35 48 | mpand | |
50 | 49 | imp | |
51 | 50 | an32s | |
52 | 51 | adantrl | |
53 | 22 52 | eqbrtrd | |
54 | 2fveq3 | |
|
55 | fveq2 | |
|
56 | 55 | oveq2d | |
57 | 54 56 | breq12d | |
58 | 53 57 | syl5ibrcom | |
59 | 58 | exp31 | |
60 | 18 59 | syld | |
61 | 60 | com14 | |
62 | 61 | com4t | |
63 | 62 | rexlimdvv | |
64 | 6 63 | syl5com | |
65 | 64 | com3l | |
66 | 65 | ralrimdv | |
67 | 66 | anim2d | |
68 | 67 | reximdva | |
69 | 4 68 | mpcom | |