Metamath Proof Explorer


Theorem cdj3lem2b

Description: Lemma for cdj3i . The first-component function S is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem2.3 S=xA+BιzA|wBx=z+w
Assertion cdj3lem2b v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormSuvnormu

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem2.3 S=xA+BιzA|wBx=z+w
4 1 2 cdj3lem1 v0<vxAyBnormx+normyvnormx+yAB=0
5 1 2 shseli uA+BtAhBu=t+h
6 5 biimpi uA+BtAhBu=t+h
7 fveq2 x=tnormx=normt
8 7 oveq1d x=tnormx+normy=normt+normy
9 fvoveq1 x=tnormx+y=normt+y
10 9 oveq2d x=tvnormx+y=vnormt+y
11 8 10 breq12d x=tnormx+normyvnormx+ynormt+normyvnormt+y
12 fveq2 y=hnormy=normh
13 12 oveq2d y=hnormt+normy=normt+normh
14 oveq2 y=ht+y=t+h
15 14 fveq2d y=hnormt+y=normt+h
16 15 oveq2d y=hvnormt+y=vnormt+h
17 13 16 breq12d y=hnormt+normyvnormt+ynormt+normhvnormt+h
18 11 17 rspc2v tAhBxAyBnormx+normyvnormx+ynormt+normhvnormt+h
19 1 2 3 cdj3lem2 tAhBAB=0St+h=t
20 19 3expa tAhBAB=0St+h=t
21 20 fveq2d tAhBAB=0normSt+h=normt
22 21 ad2ant2r tAhBnormt+normhvnormt+hAB=0vnormSt+h=normt
23 2 sheli hBh
24 normge0 h0normh
25 23 24 syl hB0normh
26 25 adantl tAhB0normh
27 1 sheli tAt
28 normcl tnormt
29 27 28 syl tAnormt
30 normcl hnormh
31 23 30 syl hBnormh
32 addge01 normtnormh0normhnormtnormt+normh
33 29 31 32 syl2an tAhB0normhnormtnormt+normh
34 26 33 mpbid tAhBnormtnormt+normh
35 34 adantr tAhBvnormtnormt+normh
36 29 ad2antrr tAhBvnormt
37 readdcl normtnormhnormt+normh
38 29 31 37 syl2an tAhBnormt+normh
39 38 adantr tAhBvnormt+normh
40 hvaddcl tht+h
41 27 23 40 syl2an tAhBt+h
42 normcl t+hnormt+h
43 41 42 syl tAhBnormt+h
44 remulcl vnormt+hvnormt+h
45 43 44 sylan2 vtAhBvnormt+h
46 45 ancoms tAhBvvnormt+h
47 letr normtnormt+normhvnormt+hnormtnormt+normhnormt+normhvnormt+hnormtvnormt+h
48 36 39 46 47 syl3anc tAhBvnormtnormt+normhnormt+normhvnormt+hnormtvnormt+h
49 35 48 mpand tAhBvnormt+normhvnormt+hnormtvnormt+h
50 49 imp tAhBvnormt+normhvnormt+hnormtvnormt+h
51 50 an32s tAhBnormt+normhvnormt+hvnormtvnormt+h
52 51 adantrl tAhBnormt+normhvnormt+hAB=0vnormtvnormt+h
53 22 52 eqbrtrd tAhBnormt+normhvnormt+hAB=0vnormSt+hvnormt+h
54 2fveq3 u=t+hnormSu=normSt+h
55 fveq2 u=t+hnormu=normt+h
56 55 oveq2d u=t+hvnormu=vnormt+h
57 54 56 breq12d u=t+hnormSuvnormunormSt+hvnormt+h
58 53 57 syl5ibrcom tAhBnormt+normhvnormt+hAB=0vu=t+hnormSuvnormu
59 58 exp31 tAhBnormt+normhvnormt+hAB=0vu=t+hnormSuvnormu
60 18 59 syld tAhBxAyBnormx+normyvnormx+yAB=0vu=t+hnormSuvnormu
61 60 com14 u=t+hxAyBnormx+normyvnormx+yAB=0vtAhBnormSuvnormu
62 61 com4t AB=0vtAhBu=t+hxAyBnormx+normyvnormx+ynormSuvnormu
63 62 rexlimdvv AB=0vtAhBu=t+hxAyBnormx+normyvnormx+ynormSuvnormu
64 6 63 syl5com uA+BAB=0vxAyBnormx+normyvnormx+ynormSuvnormu
65 64 com3l AB=0vxAyBnormx+normyvnormx+yuA+BnormSuvnormu
66 65 ralrimdv AB=0vxAyBnormx+normyvnormx+yuA+BnormSuvnormu
67 66 anim2d AB=0v0<vxAyBnormx+normyvnormx+y0<vuA+BnormSuvnormu
68 67 reximdva AB=0v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormSuvnormu
69 4 68 mpcom v0<vxAyBnormx+normyvnormx+yv0<vuA+BnormSuvnormu