| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
|
| 2 |
|
cdleme4.j |
|
| 3 |
|
cdleme4.m |
|
| 4 |
|
cdleme4.a |
|
| 5 |
|
cdleme4.h |
|
| 6 |
|
cdleme4.u |
|
| 7 |
|
cdleme4.f |
|
| 8 |
|
cdleme4.g |
|
| 9 |
|
cdleme7.v |
|
| 10 |
|
simp11l |
|
| 11 |
10
|
hllatd |
|
| 12 |
|
simp2ll |
|
| 13 |
|
eqid |
|
| 14 |
13 4
|
atbase |
|
| 15 |
12 14
|
syl |
|
| 16 |
|
hlop |
|
| 17 |
|
eqid |
|
| 18 |
13 17
|
op0cl |
|
| 19 |
10 16 18
|
3syl |
|
| 20 |
13 2
|
latjcl |
|
| 21 |
11 15 19 20
|
syl3anc |
|
| 22 |
|
simp12l |
|
| 23 |
|
simp13l |
|
| 24 |
13 2 4
|
hlatjcl |
|
| 25 |
10 22 23 24
|
syl3anc |
|
| 26 |
|
simp11 |
|
| 27 |
|
simp2rl |
|
| 28 |
1 2 3 4 5 6 7 13
|
cdleme1b |
|
| 29 |
26 22 23 27 28
|
syl13anc |
|
| 30 |
13 2 4
|
hlatjcl |
|
| 31 |
10 12 27 30
|
syl3anc |
|
| 32 |
|
simp11r |
|
| 33 |
13 5
|
lhpbase |
|
| 34 |
32 33
|
syl |
|
| 35 |
13 3
|
latmcl |
|
| 36 |
11 31 34 35
|
syl3anc |
|
| 37 |
13 2
|
latjcl |
|
| 38 |
11 29 36 37
|
syl3anc |
|
| 39 |
13 3
|
latmcl |
|
| 40 |
11 25 38 39
|
syl3anc |
|
| 41 |
8 40
|
eqeltrid |
|
| 42 |
13 2
|
latjcl |
|
| 43 |
11 15 41 42
|
syl3anc |
|
| 44 |
13 1 3
|
latmle2 |
|
| 45 |
11 25 34 44
|
syl3anc |
|
| 46 |
6 45
|
eqbrtrid |
|
| 47 |
|
simp2lr |
|
| 48 |
|
nbrne2 |
|
| 49 |
48
|
necomd |
|
| 50 |
46 47 49
|
syl2anc |
|
| 51 |
|
simp12 |
|
| 52 |
|
simp31 |
|
| 53 |
1 2 3 4 5 6
|
lhpat2 |
|
| 54 |
26 51 23 52 53
|
syl112anc |
|
| 55 |
|
eqid |
|
| 56 |
2 55 4
|
atcvr1 |
|
| 57 |
10 12 54 56
|
syl3anc |
|
| 58 |
50 57
|
mpbid |
|
| 59 |
|
hlol |
|
| 60 |
10 59
|
syl |
|
| 61 |
13 2 17
|
olj01 |
|
| 62 |
60 15 61
|
syl2anc |
|
| 63 |
|
simp2l |
|
| 64 |
|
simp2r |
|
| 65 |
|
simp32 |
|
| 66 |
1 2 3 4 5 6 7 8
|
cdleme5 |
|
| 67 |
26 22 23 63 64 65 66
|
syl132anc |
|
| 68 |
1 2 3 4 5 6
|
cdleme4 |
|
| 69 |
26 22 23 63 65 68
|
syl131anc |
|
| 70 |
67 69
|
eqtrd |
|
| 71 |
58 62 70
|
3brtr4d |
|
| 72 |
13 55
|
cvrne |
|
| 73 |
10 21 43 71 72
|
syl31anc |
|
| 74 |
|
oveq2 |
|
| 75 |
74
|
necon3i |
|
| 76 |
73 75
|
syl |
|
| 77 |
76
|
necomd |
|