Metamath Proof Explorer


Theorem cdleme7e

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 8-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
cdleme7.v V=R˙S˙W
Assertion cdleme7e KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QG0.K

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 cdleme7.v V=R˙S˙W
10 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKLat
12 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA
13 eqid BaseK=BaseK
14 13 4 atbase RARBaseK
15 12 14 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRBaseK
16 hlop KHLKOP
17 eqid 0.K=0.K
18 13 17 op0cl KOP0.KBaseK
19 10 16 18 3syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q0.KBaseK
20 13 2 latjcl KLatRBaseK0.KBaseKR˙0.KBaseK
21 11 15 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙0.KBaseK
22 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA
23 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QQA
24 13 2 4 hlatjcl KHLPAQAP˙QBaseK
25 10 22 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙QBaseK
26 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHLWH
27 simp2rl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA
28 1 2 3 4 5 6 7 13 cdleme1b KHLWHPAQASAFBaseK
29 26 22 23 27 28 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QFBaseK
30 13 2 4 hlatjcl KHLRASAR˙SBaseK
31 10 12 27 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙SBaseK
32 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWH
33 13 5 lhpbase WHWBaseK
34 32 33 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWBaseK
35 13 3 latmcl KLatR˙SBaseKWBaseKR˙S˙WBaseK
36 11 31 34 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙S˙WBaseK
37 13 2 latjcl KLatFBaseKR˙S˙WBaseKF˙R˙S˙WBaseK
38 11 29 36 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QF˙R˙S˙WBaseK
39 13 3 latmcl KLatP˙QBaseKF˙R˙S˙WBaseKP˙Q˙F˙R˙S˙WBaseK
40 11 25 38 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙F˙R˙S˙WBaseK
41 8 40 eqeltrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QGBaseK
42 13 2 latjcl KLatRBaseKGBaseKR˙GBaseK
43 11 15 41 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙GBaseK
44 13 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
45 11 25 34 44 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙W˙W
46 6 45 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙W
47 simp2lr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬R˙W
48 nbrne2 U˙W¬R˙WUR
49 48 necomd U˙W¬R˙WRU
50 46 47 49 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRU
51 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA¬P˙W
52 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPQ
53 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
54 26 51 23 52 53 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUA
55 eqid K=K
56 2 55 4 atcvr1 KHLRAUARURKR˙U
57 10 12 54 56 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRURKR˙U
58 50 57 mpbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRKR˙U
59 hlol KHLKOL
60 10 59 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKOL
61 13 2 17 olj01 KOLRBaseKR˙0.K=R
62 60 15 61 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙0.K=R
63 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA¬R˙W
64 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA¬S˙W
65 simp32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙P˙Q
66 1 2 3 4 5 6 7 8 cdleme5 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙QR˙G=P˙Q
67 26 22 23 63 64 65 66 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙G=P˙Q
68 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
69 26 22 23 63 65 68 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q=R˙U
70 67 69 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙G=R˙U
71 58 62 70 3brtr4d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙0.KKR˙G
72 13 55 cvrne KHLR˙0.KBaseKR˙GBaseKR˙0.KKR˙GR˙0.KR˙G
73 10 21 43 71 72 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙0.KR˙G
74 oveq2 0.K=GR˙0.K=R˙G
75 74 necon3i R˙0.KR˙G0.KG
76 73 75 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q0.KG
77 76 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QG0.K