Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg4.l |
|
2 |
|
cdlemg4.a |
|
3 |
|
cdlemg4.h |
|
4 |
|
cdlemg4.t |
|
5 |
|
cdlemg4.r |
|
6 |
|
cdlemg4.j |
|
7 |
|
cdlemg4b.v |
|
8 |
|
eqid |
|
9 |
1 2 3 4 5 6 7 8
|
cdlemg4g |
|
10 |
|
simp1l |
|
11 |
|
simp21l |
|
12 |
|
simp22l |
|
13 |
6 2
|
hlatjcom |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
14
|
oveq2d |
|
16 |
|
simp1 |
|
17 |
|
simp31 |
|
18 |
|
eqid |
|
19 |
18 3 4 5
|
trlcl |
|
20 |
16 17 19
|
syl2anc |
|
21 |
7 20
|
eqeltrid |
|
22 |
|
simp32 |
|
23 |
|
simp21r |
|
24 |
|
simp21 |
|
25 |
1 6 8 2 3 4 5
|
trlval2 |
|
26 |
16 17 24 25
|
syl3anc |
|
27 |
7 26
|
eqtrid |
|
28 |
10
|
hllatd |
|
29 |
1 2 3 4
|
ltrnel |
|
30 |
16 17 24 29
|
syl3anc |
|
31 |
30
|
simpld |
|
32 |
18 6 2
|
hlatjcl |
|
33 |
10 11 31 32
|
syl3anc |
|
34 |
|
simp1r |
|
35 |
18 3
|
lhpbase |
|
36 |
34 35
|
syl |
|
37 |
18 1 8
|
latmle2 |
|
38 |
28 33 36 37
|
syl3anc |
|
39 |
27 38
|
eqbrtrd |
|
40 |
18 2
|
atbase |
|
41 |
11 40
|
syl |
|
42 |
18 1
|
lattr |
|
43 |
28 41 21 36 42
|
syl13anc |
|
44 |
39 43
|
mpan2d |
|
45 |
23 44
|
mtod |
|
46 |
18 1 6 2
|
hlexch2 |
|
47 |
10 11 12 21 45 46
|
syl131anc |
|
48 |
22 47
|
mtod |
|
49 |
18 1 6 8 2
|
2llnma1b |
|
50 |
10 21 12 11 48 49
|
syl131anc |
|
51 |
9 15 50
|
3eqtrd |
|