Metamath Proof Explorer


Theorem cdlemg42

Description: Part of proof of Lemma G of Crawley p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg42.l ˙=K
cdlemg42.j ˙=joinK
cdlemg42.a A=AtomsK
cdlemg42.h H=LHypK
cdlemg42.t T=LTrnKW
cdlemg42.r R=trLKW
Assertion cdlemg42 KHLWHFTGTPA¬P˙WGPPRFRG¬GP˙P˙FP

Proof

Step Hyp Ref Expression
1 cdlemg42.l ˙=K
2 cdlemg42.j ˙=joinK
3 cdlemg42.a A=AtomsK
4 cdlemg42.h H=LHypK
5 cdlemg42.t T=LTrnKW
6 cdlemg42.r R=trLKW
7 simp33 KHLWHFTGTPA¬P˙WGPPRFRGRFRG
8 simpl1l KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPKHL
9 simp31l KHLWHFTGTPA¬P˙WGPPRFRGPA
10 9 adantr KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPPA
11 simp1 KHLWHFTGTPA¬P˙WGPPRFRGKHLWH
12 simp2l KHLWHFTGTPA¬P˙WGPPRFRGFT
13 1 3 4 5 ltrnat KHLWHFTPAFPA
14 11 12 9 13 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGFPA
15 14 adantr KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPFPA
16 1 2 3 hlatlej1 KHLPAFPAP˙P˙FP
17 8 10 15 16 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙P˙FP
18 simpr KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPGP˙P˙FP
19 8 hllatd KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPKLat
20 eqid BaseK=BaseK
21 20 3 atbase PAPBaseK
22 10 21 syl KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPPBaseK
23 simp2r KHLWHFTGTPA¬P˙WGPPRFRGGT
24 1 3 4 5 ltrnat KHLWHGTPAGPA
25 11 23 9 24 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGPA
26 25 adantr KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPGPA
27 20 3 atbase GPAGPBaseK
28 26 27 syl KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPGPBaseK
29 20 2 3 hlatjcl KHLPAFPAP˙FPBaseK
30 8 10 15 29 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙FPBaseK
31 20 1 2 latjle12 KLatPBaseKGPBaseKP˙FPBaseKP˙P˙FPGP˙P˙FPP˙GP˙P˙FP
32 19 22 28 30 31 syl13anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙P˙FPGP˙P˙FPP˙GP˙P˙FP
33 17 18 32 mpbi2and KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙GP˙P˙FP
34 simpl32 KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPGPP
35 34 necomd KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPPGP
36 1 2 3 ps-1 KHLPAGPAPGPPAFPAP˙GP˙P˙FPP˙GP=P˙FP
37 8 10 26 35 10 15 36 syl132anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙GP˙P˙FPP˙GP=P˙FP
38 33 37 mpbid KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙GP=P˙FP
39 38 oveq1d KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPP˙GPmeetKW=P˙FPmeetKW
40 simpl1 KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPKHLWH
41 simpl2r KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPGT
42 simpl31 KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPPA¬P˙W
43 eqid meetK=meetK
44 1 2 43 3 4 5 6 trlval2 KHLWHGTPA¬P˙WRG=P˙GPmeetKW
45 40 41 42 44 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPRG=P˙GPmeetKW
46 simpl2l KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPFT
47 1 2 43 3 4 5 6 trlval2 KHLWHFTPA¬P˙WRF=P˙FPmeetKW
48 40 46 42 47 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPRF=P˙FPmeetKW
49 39 45 48 3eqtr4rd KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPRF=RG
50 49 ex KHLWHFTGTPA¬P˙WGPPRFRGGP˙P˙FPRF=RG
51 50 necon3ad KHLWHFTGTPA¬P˙WGPPRFRGRFRG¬GP˙P˙FP
52 7 51 mpd KHLWHFTGTPA¬P˙WGPPRFRG¬GP˙P˙FP