Metamath Proof Explorer


Theorem cdlemg42

Description: Part of proof of Lemma G of Crawley p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg42.l ˙ = K
cdlemg42.j ˙ = join K
cdlemg42.a A = Atoms K
cdlemg42.h H = LHyp K
cdlemg42.t T = LTrn K W
cdlemg42.r R = trL K W
Assertion cdlemg42 K HL W H F T G T P A ¬ P ˙ W G P P R F R G ¬ G P ˙ P ˙ F P

Proof

Step Hyp Ref Expression
1 cdlemg42.l ˙ = K
2 cdlemg42.j ˙ = join K
3 cdlemg42.a A = Atoms K
4 cdlemg42.h H = LHyp K
5 cdlemg42.t T = LTrn K W
6 cdlemg42.r R = trL K W
7 simp33 K HL W H F T G T P A ¬ P ˙ W G P P R F R G R F R G
8 simpl1l K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P K HL
9 simp31l K HL W H F T G T P A ¬ P ˙ W G P P R F R G P A
10 9 adantr K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P A
11 simp1 K HL W H F T G T P A ¬ P ˙ W G P P R F R G K HL W H
12 simp2l K HL W H F T G T P A ¬ P ˙ W G P P R F R G F T
13 1 3 4 5 ltrnat K HL W H F T P A F P A
14 11 12 9 13 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G F P A
15 14 adantr K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P F P A
16 1 2 3 hlatlej1 K HL P A F P A P ˙ P ˙ F P
17 8 10 15 16 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ P ˙ F P
18 simpr K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P G P ˙ P ˙ F P
19 8 hllatd K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P K Lat
20 eqid Base K = Base K
21 20 3 atbase P A P Base K
22 10 21 syl K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P Base K
23 simp2r K HL W H F T G T P A ¬ P ˙ W G P P R F R G G T
24 1 3 4 5 ltrnat K HL W H G T P A G P A
25 11 23 9 24 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P A
26 25 adantr K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P G P A
27 20 3 atbase G P A G P Base K
28 26 27 syl K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P G P Base K
29 20 2 3 hlatjcl K HL P A F P A P ˙ F P Base K
30 8 10 15 29 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ F P Base K
31 20 1 2 latjle12 K Lat P Base K G P Base K P ˙ F P Base K P ˙ P ˙ F P G P ˙ P ˙ F P P ˙ G P ˙ P ˙ F P
32 19 22 28 30 31 syl13anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ P ˙ F P G P ˙ P ˙ F P P ˙ G P ˙ P ˙ F P
33 17 18 32 mpbi2and K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ G P ˙ P ˙ F P
34 simpl32 K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P G P P
35 34 necomd K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P G P
36 1 2 3 ps-1 K HL P A G P A P G P P A F P A P ˙ G P ˙ P ˙ F P P ˙ G P = P ˙ F P
37 8 10 26 35 10 15 36 syl132anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ G P ˙ P ˙ F P P ˙ G P = P ˙ F P
38 33 37 mpbid K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ G P = P ˙ F P
39 38 oveq1d K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P ˙ G P meet K W = P ˙ F P meet K W
40 simpl1 K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P K HL W H
41 simpl2r K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P G T
42 simpl31 K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P P A ¬ P ˙ W
43 eqid meet K = meet K
44 1 2 43 3 4 5 6 trlval2 K HL W H G T P A ¬ P ˙ W R G = P ˙ G P meet K W
45 40 41 42 44 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P R G = P ˙ G P meet K W
46 simpl2l K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P F T
47 1 2 43 3 4 5 6 trlval2 K HL W H F T P A ¬ P ˙ W R F = P ˙ F P meet K W
48 40 46 42 47 syl3anc K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P R F = P ˙ F P meet K W
49 39 45 48 3eqtr4rd K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P R F = R G
50 49 ex K HL W H F T G T P A ¬ P ˙ W G P P R F R G G P ˙ P ˙ F P R F = R G
51 50 necon3ad K HL W H F T G T P A ¬ P ˙ W G P P R F R G R F R G ¬ G P ˙ P ˙ F P
52 7 51 mpd K HL W H F T G T P A ¬ P ˙ W G P P R F R G ¬ G P ˙ P ˙ F P