| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg42.l |
|
| 2 |
|
cdlemg42.j |
|
| 3 |
|
cdlemg42.a |
|
| 4 |
|
cdlemg42.h |
|
| 5 |
|
cdlemg42.t |
|
| 6 |
|
cdlemg42.r |
|
| 7 |
|
simp33 |
|
| 8 |
|
simpl1l |
|
| 9 |
|
simp31l |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp2l |
|
| 13 |
1 3 4 5
|
ltrnat |
|
| 14 |
11 12 9 13
|
syl3anc |
|
| 15 |
14
|
adantr |
|
| 16 |
1 2 3
|
hlatlej1 |
|
| 17 |
8 10 15 16
|
syl3anc |
|
| 18 |
|
simpr |
|
| 19 |
8
|
hllatd |
|
| 20 |
|
eqid |
|
| 21 |
20 3
|
atbase |
|
| 22 |
10 21
|
syl |
|
| 23 |
|
simp2r |
|
| 24 |
1 3 4 5
|
ltrnat |
|
| 25 |
11 23 9 24
|
syl3anc |
|
| 26 |
25
|
adantr |
|
| 27 |
20 3
|
atbase |
|
| 28 |
26 27
|
syl |
|
| 29 |
20 2 3
|
hlatjcl |
|
| 30 |
8 10 15 29
|
syl3anc |
|
| 31 |
20 1 2
|
latjle12 |
|
| 32 |
19 22 28 30 31
|
syl13anc |
|
| 33 |
17 18 32
|
mpbi2and |
|
| 34 |
|
simpl32 |
|
| 35 |
34
|
necomd |
|
| 36 |
1 2 3
|
ps-1 |
|
| 37 |
8 10 26 35 10 15 36
|
syl132anc |
|
| 38 |
33 37
|
mpbid |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
simpl1 |
|
| 41 |
|
simpl2r |
|
| 42 |
|
simpl31 |
|
| 43 |
|
eqid |
|
| 44 |
1 2 43 3 4 5 6
|
trlval2 |
|
| 45 |
40 41 42 44
|
syl3anc |
|
| 46 |
|
simpl2l |
|
| 47 |
1 2 43 3 4 5 6
|
trlval2 |
|
| 48 |
40 46 42 47
|
syl3anc |
|
| 49 |
39 45 48
|
3eqtr4rd |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
necon3ad |
|
| 52 |
7 51
|
mpd |
|