Metamath Proof Explorer


Theorem cdlemk2

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
Assertion cdlemk2 KHLWHFTGTPA¬P˙WGP˙RGF-1=FP˙RGF-1

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 simp1 KHLWHFTGTPA¬P˙WKHLWH
9 simp2r KHLWHFTGTPA¬P˙WGT
10 simp2l KHLWHFTGTPA¬P˙WFT
11 5 6 ltrncnv KHLWHFTF-1T
12 8 10 11 syl2anc KHLWHFTGTPA¬P˙WF-1T
13 5 6 ltrnco KHLWHGTF-1TGF-1T
14 8 9 12 13 syl3anc KHLWHFTGTPA¬P˙WGF-1T
15 2 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
16 15 3adant2r KHLWHFTGTPA¬P˙WFPA¬FP˙W
17 2 3 4 5 6 7 trljat3 KHLWHGF-1TFPA¬FP˙WFP˙RGF-1=GF-1FP˙RGF-1
18 8 14 16 17 syl3anc KHLWHFTGTPA¬P˙WFP˙RGF-1=GF-1FP˙RGF-1
19 simp3l KHLWHFTGTPA¬P˙WPA
20 2 4 5 6 ltrncoval KHLWHGF-1TFTPAGF-1FP=GF-1FP
21 8 14 10 19 20 syl121anc KHLWHFTGTPA¬P˙WGF-1FP=GF-1FP
22 coass GF-1F=GF-1F
23 1 5 6 ltrn1o KHLWHFTF:B1-1 ontoB
24 8 10 23 syl2anc KHLWHFTGTPA¬P˙WF:B1-1 ontoB
25 f1ococnv1 F:B1-1 ontoBF-1F=IB
26 24 25 syl KHLWHFTGTPA¬P˙WF-1F=IB
27 26 coeq2d KHLWHFTGTPA¬P˙WGF-1F=GIB
28 1 5 6 ltrn1o KHLWHGTG:B1-1 ontoB
29 8 9 28 syl2anc KHLWHFTGTPA¬P˙WG:B1-1 ontoB
30 f1of G:B1-1 ontoBG:BB
31 fcoi1 G:BBGIB=G
32 29 30 31 3syl KHLWHFTGTPA¬P˙WGIB=G
33 27 32 eqtrd KHLWHFTGTPA¬P˙WGF-1F=G
34 22 33 eqtrid KHLWHFTGTPA¬P˙WGF-1F=G
35 34 fveq1d KHLWHFTGTPA¬P˙WGF-1FP=GP
36 21 35 eqtr3d KHLWHFTGTPA¬P˙WGF-1FP=GP
37 36 oveq1d KHLWHFTGTPA¬P˙WGF-1FP˙RGF-1=GP˙RGF-1
38 18 37 eqtr2d KHLWHFTGTPA¬P˙WGP˙RGF-1=FP˙RGF-1