| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk.b |  | 
						
							| 2 |  | cdlemk.l |  | 
						
							| 3 |  | cdlemk.j |  | 
						
							| 4 |  | cdlemk.a |  | 
						
							| 5 |  | cdlemk.h |  | 
						
							| 6 |  | cdlemk.t |  | 
						
							| 7 |  | cdlemk.r |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp2r |  | 
						
							| 10 |  | simp2l |  | 
						
							| 11 | 5 6 | ltrncnv |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 | 5 6 | ltrnco |  | 
						
							| 14 | 8 9 12 13 | syl3anc |  | 
						
							| 15 | 2 4 5 6 | ltrnel |  | 
						
							| 16 | 15 | 3adant2r |  | 
						
							| 17 | 2 3 4 5 6 7 | trljat3 |  | 
						
							| 18 | 8 14 16 17 | syl3anc |  | 
						
							| 19 |  | simp3l |  | 
						
							| 20 | 2 4 5 6 | ltrncoval |  | 
						
							| 21 | 8 14 10 19 20 | syl121anc |  | 
						
							| 22 |  | coass |  | 
						
							| 23 | 1 5 6 | ltrn1o |  | 
						
							| 24 | 8 10 23 | syl2anc |  | 
						
							| 25 |  | f1ococnv1 |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 26 | coeq2d |  | 
						
							| 28 | 1 5 6 | ltrn1o |  | 
						
							| 29 | 8 9 28 | syl2anc |  | 
						
							| 30 |  | f1of |  | 
						
							| 31 |  | fcoi1 |  | 
						
							| 32 | 29 30 31 | 3syl |  | 
						
							| 33 | 27 32 | eqtrd |  | 
						
							| 34 | 22 33 | eqtrid |  | 
						
							| 35 | 34 | fveq1d |  | 
						
							| 36 | 21 35 | eqtr3d |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 18 37 | eqtr2d |  |