Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk.b | |
|
cdlemk.l | |
||
cdlemk.j | |
||
cdlemk.a | |
||
cdlemk.h | |
||
cdlemk.t | |
||
cdlemk.r | |
||
Assertion | cdlemk2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk.b | |
|
2 | cdlemk.l | |
|
3 | cdlemk.j | |
|
4 | cdlemk.a | |
|
5 | cdlemk.h | |
|
6 | cdlemk.t | |
|
7 | cdlemk.r | |
|
8 | simp1 | |
|
9 | simp2r | |
|
10 | simp2l | |
|
11 | 5 6 | ltrncnv | |
12 | 8 10 11 | syl2anc | |
13 | 5 6 | ltrnco | |
14 | 8 9 12 13 | syl3anc | |
15 | 2 4 5 6 | ltrnel | |
16 | 15 | 3adant2r | |
17 | 2 3 4 5 6 7 | trljat3 | |
18 | 8 14 16 17 | syl3anc | |
19 | simp3l | |
|
20 | 2 4 5 6 | ltrncoval | |
21 | 8 14 10 19 20 | syl121anc | |
22 | coass | |
|
23 | 1 5 6 | ltrn1o | |
24 | 8 10 23 | syl2anc | |
25 | f1ococnv1 | |
|
26 | 24 25 | syl | |
27 | 26 | coeq2d | |
28 | 1 5 6 | ltrn1o | |
29 | 8 9 28 | syl2anc | |
30 | f1of | |
|
31 | fcoi1 | |
|
32 | 29 30 31 | 3syl | |
33 | 27 32 | eqtrd | |
34 | 22 33 | eqtrid | |
35 | 34 | fveq1d | |
36 | 21 35 | eqtr3d | |
37 | 36 | oveq1d | |
38 | 18 37 | eqtr2d | |