Metamath Proof Explorer


Theorem cflm

Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of Enderton p. 257. (Contributed by NM, 26-Apr-2004)

Ref Expression
Assertion cflm ABLimAcfA=x|yx=cardyyAA=y

Proof

Step Hyp Ref Expression
1 elex ABAV
2 limsuc LimAvAsucvA
3 2 biimpd LimAvAsucvA
4 sseq1 z=sucvzwsucvw
5 4 rexbidv z=sucvwyzwwysucvw
6 5 rspcv sucvAzAwyzwwysucvw
7 sucssel vVsucvwvw
8 7 elv sucvwvw
9 8 reximi wysucvwwyvw
10 eluni2 vywyvw
11 9 10 sylibr wysucvwvy
12 6 11 syl6com zAwyzwsucvAvy
13 3 12 syl9 LimAzAwyzwvAvy
14 13 ralrimdv LimAzAwyzwvAvy
15 dfss3 AyvAvy
16 14 15 syl6ibr LimAzAwyzwAy
17 16 adantr LimAyAzAwyzwAy
18 uniss yAyA
19 limuni LimAA=A
20 19 sseq2d LimAyAyA
21 18 20 imbitrrid LimAyAyA
22 21 imp LimAyAyA
23 17 22 jctird LimAyAzAwyzwAyyA
24 eqss A=yAyyA
25 23 24 syl6ibr LimAyAzAwyzwA=y
26 25 imdistanda LimAyAzAwyzwyAA=y
27 26 anim2d LimAx=cardyyAzAwyzwx=cardyyAA=y
28 27 eximdv LimAyx=cardyyAzAwyzwyx=cardyyAA=y
29 28 ss2abdv LimAx|yx=cardyyAzAwyzwx|yx=cardyyAA=y
30 intss x|yx=cardyyAzAwyzwx|yx=cardyyAA=yx|yx=cardyyAA=yx|yx=cardyyAzAwyzw
31 29 30 syl LimAx|yx=cardyyAA=yx|yx=cardyyAzAwyzw
32 31 adantl AVLimAx|yx=cardyyAA=yx|yx=cardyyAzAwyzw
33 limelon AVLimAAOn
34 cfval AOncfA=x|yx=cardyyAzAwyzw
35 33 34 syl AVLimAcfA=x|yx=cardyyAzAwyzw
36 32 35 sseqtrrd AVLimAx|yx=cardyyAA=ycfA
37 cfub cfAx|yx=cardyyAAy
38 eqimss A=yAy
39 38 anim2i yAA=yyAAy
40 39 anim2i x=cardyyAA=yx=cardyyAAy
41 40 eximi yx=cardyyAA=yyx=cardyyAAy
42 41 ss2abi x|yx=cardyyAA=yx|yx=cardyyAAy
43 intss x|yx=cardyyAA=yx|yx=cardyyAAyx|yx=cardyyAAyx|yx=cardyyAA=y
44 42 43 ax-mp x|yx=cardyyAAyx|yx=cardyyAA=y
45 37 44 sstri cfAx|yx=cardyyAA=y
46 36 45 jctil AVLimAcfAx|yx=cardyyAA=yx|yx=cardyyAA=ycfA
47 eqss cfA=x|yx=cardyyAA=ycfAx|yx=cardyyAA=yx|yx=cardyyAA=ycfA
48 46 47 sylibr AVLimAcfA=x|yx=cardyyAA=y
49 1 48 sylan ABLimAcfA=x|yx=cardyyAA=y