Metamath Proof Explorer


Theorem cfub

Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cfub cfAx|yx=cardyyAAy

Proof

Step Hyp Ref Expression
1 cfval AOncfA=x|yx=cardyyAzAwyzw
2 dfss3 AyzAzy
3 ssel yAwywA
4 onelon AOnwAwOn
5 4 ex AOnwAwOn
6 3 5 sylan9r AOnyAwywOn
7 onelss wOnzwzw
8 6 7 syl6 AOnyAwyzwzw
9 8 imdistand AOnyAwyzwwyzw
10 9 ancomsd AOnyAzwwywyzw
11 10 eximdv AOnyAwzwwywwyzw
12 eluni zywzwwy
13 df-rex wyzwwwyzw
14 11 12 13 3imtr4g AOnyAzywyzw
15 14 ralimdv AOnyAzAzyzAwyzw
16 2 15 biimtrid AOnyAAyzAwyzw
17 16 imdistanda AOnyAAyyAzAwyzw
18 17 anim2d AOnx=cardyyAAyx=cardyyAzAwyzw
19 18 eximdv AOnyx=cardyyAAyyx=cardyyAzAwyzw
20 19 ss2abdv AOnx|yx=cardyyAAyx|yx=cardyyAzAwyzw
21 intss x|yx=cardyyAAyx|yx=cardyyAzAwyzwx|yx=cardyyAzAwyzwx|yx=cardyyAAy
22 20 21 syl AOnx|yx=cardyyAzAwyzwx|yx=cardyyAAy
23 1 22 eqsstrd AOncfAx|yx=cardyyAAy
24 cff cf:OnOn
25 24 fdmi domcf=On
26 25 eleq2i AdomcfAOn
27 ndmfv ¬AdomcfcfA=
28 26 27 sylnbir ¬AOncfA=
29 0ss x|yx=cardyyAAy
30 28 29 eqsstrdi ¬AOncfAx|yx=cardyyAAy
31 23 30 pm2.61i cfAx|yx=cardyyAAy