Metamath Proof Explorer


Theorem chirredlem3

Description: Lemma for chirredi . (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 AC
chirred.2 xCA𝐶x
Assertion chirredlem3 pHAtomspAqHAtomsqArHAtomsrpqrAr=p

Proof

Step Hyp Ref Expression
1 chirred.1 AC
2 chirred.2 xCA𝐶x
3 atelch qHAtomsqC
4 1 chirredlem2 pHAtomspAqCqArHAtomsrArpqrpq=q
5 4 oveq2d pHAtomspAqCqArHAtomsrArpqrrpq=rq
6 atelch rHAtomsrC
7 6 adantr rHAtomsrArC
8 atelch pHAtomspC
9 chjcl pCqCpqC
10 8 9 sylan pHAtomsqCpqC
11 10 ad2ant2r pHAtomspAqCqApqC
12 id rpqrpq
13 pjoml2 rCpqCrpqrrpq=pq
14 7 11 12 13 syl3an rHAtomsrApHAtomspAqCqArpqrrpq=pq
15 14 3com12 pHAtomspAqCqArHAtomsrArpqrrpq=pq
16 15 3expb pHAtomspAqCqArHAtomsrArpqrrpq=pq
17 5 16 eqtr3d pHAtomspAqCqArHAtomsrArpqrq=pq
18 17 ineq2d pHAtomspAqCqArHAtomsrArpqArq=Apq
19 breq2 x=rA𝐶xA𝐶r
20 19 2 vtoclga rCA𝐶r
21 breq2 x=qA𝐶xA𝐶q
22 21 2 vtoclga qCA𝐶q
23 20 22 anim12i rCqCA𝐶rA𝐶q
24 fh1 ACrCqCA𝐶rA𝐶qArq=ArAq
25 1 24 mp3anl1 rCqCA𝐶rA𝐶qArq=ArAq
26 23 25 mpdan rCqCArq=ArAq
27 6 26 sylan rHAtomsqCArq=ArAq
28 27 ancoms qCrHAtomsArq=ArAq
29 28 adantrr qCrHAtomsrAArq=ArAq
30 29 ad2ant2r qCqArHAtomsrArpqArq=ArAq
31 30 adantll pHAtomspAqCqArHAtomsrArpqArq=ArAq
32 breq2 x=pA𝐶xA𝐶p
33 32 2 vtoclga pCA𝐶p
34 33 22 anim12i pCqCA𝐶pA𝐶q
35 fh1 ACpCqCA𝐶pA𝐶qApq=ApAq
36 1 35 mp3anl1 pCqCA𝐶pA𝐶qApq=ApAq
37 34 36 mpdan pCqCApq=ApAq
38 8 37 sylan pHAtomsqCApq=ApAq
39 38 ad2ant2r pHAtomspAqCqAApq=ApAq
40 39 adantr pHAtomspAqCqArHAtomsrArpqApq=ApAq
41 18 31 40 3eqtr3d pHAtomspAqCqArHAtomsrArpqArAq=ApAq
42 sseqin2 rAAr=r
43 42 biimpi rAAr=r
44 43 ad2antlr rHAtomsrArpqAr=r
45 44 adantl pHAtomspAqCqArHAtomsrArpqAr=r
46 incom Aq=qA
47 chsh qCqS
48 1 chshii AS
49 orthin qSASqAqA=0
50 47 48 49 sylancl qCqAqA=0
51 50 imp qCqAqA=0
52 46 51 eqtrid qCqAAq=0
53 52 ad2antlr pHAtomspAqCqArHAtomsrArpqAq=0
54 45 53 oveq12d pHAtomspAqCqArHAtomsrArpqArAq=r0
55 sseqin2 pAAp=p
56 55 biimpi pAAp=p
57 56 adantl pHAtomspAAp=p
58 57 ad2antrr pHAtomspAqCqArHAtomsrArpqAp=p
59 58 53 oveq12d pHAtomspAqCqArHAtomsrArpqApAq=p0
60 41 54 59 3eqtr3d pHAtomspAqCqArHAtomsrArpqr0=p0
61 chj0 rCr0=r
62 6 61 syl rHAtomsr0=r
63 62 ad2antrr rHAtomsrArpqr0=r
64 63 adantl pHAtomspAqCqArHAtomsrArpqr0=r
65 chj0 pCp0=p
66 8 65 syl pHAtomsp0=p
67 66 ad3antrrr pHAtomspAqCqArHAtomsrArpqp0=p
68 60 64 67 3eqtr3d pHAtomspAqCqArHAtomsrArpqr=p
69 68 exp44 pHAtomspAqCqArHAtomsrArpqr=p
70 69 com34 pHAtomspAqCqArHAtomsrpqrAr=p
71 3 70 sylanr1 pHAtomspAqHAtomsqArHAtomsrpqrAr=p
72 71 imp32 pHAtomspAqHAtomsqArHAtomsrpqrAr=p