Metamath Proof Explorer


Theorem chirredlem3

Description: Lemma for chirredi . (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 A C
chirred.2 x C A 𝐶 x
Assertion chirredlem3 p HAtoms p A q HAtoms q A r HAtoms r p q r A r = p

Proof

Step Hyp Ref Expression
1 chirred.1 A C
2 chirred.2 x C A 𝐶 x
3 atelch q HAtoms q C
4 1 chirredlem2 p HAtoms p A q C q A r HAtoms r A r p q r p q = q
5 4 oveq2d p HAtoms p A q C q A r HAtoms r A r p q r r p q = r q
6 atelch r HAtoms r C
7 6 adantr r HAtoms r A r C
8 atelch p HAtoms p C
9 chjcl p C q C p q C
10 8 9 sylan p HAtoms q C p q C
11 10 ad2ant2r p HAtoms p A q C q A p q C
12 id r p q r p q
13 pjoml2 r C p q C r p q r r p q = p q
14 7 11 12 13 syl3an r HAtoms r A p HAtoms p A q C q A r p q r r p q = p q
15 14 3com12 p HAtoms p A q C q A r HAtoms r A r p q r r p q = p q
16 15 3expb p HAtoms p A q C q A r HAtoms r A r p q r r p q = p q
17 5 16 eqtr3d p HAtoms p A q C q A r HAtoms r A r p q r q = p q
18 17 ineq2d p HAtoms p A q C q A r HAtoms r A r p q A r q = A p q
19 breq2 x = r A 𝐶 x A 𝐶 r
20 19 2 vtoclga r C A 𝐶 r
21 breq2 x = q A 𝐶 x A 𝐶 q
22 21 2 vtoclga q C A 𝐶 q
23 20 22 anim12i r C q C A 𝐶 r A 𝐶 q
24 fh1 A C r C q C A 𝐶 r A 𝐶 q A r q = A r A q
25 1 24 mp3anl1 r C q C A 𝐶 r A 𝐶 q A r q = A r A q
26 23 25 mpdan r C q C A r q = A r A q
27 6 26 sylan r HAtoms q C A r q = A r A q
28 27 ancoms q C r HAtoms A r q = A r A q
29 28 adantrr q C r HAtoms r A A r q = A r A q
30 29 ad2ant2r q C q A r HAtoms r A r p q A r q = A r A q
31 30 adantll p HAtoms p A q C q A r HAtoms r A r p q A r q = A r A q
32 breq2 x = p A 𝐶 x A 𝐶 p
33 32 2 vtoclga p C A 𝐶 p
34 33 22 anim12i p C q C A 𝐶 p A 𝐶 q
35 fh1 A C p C q C A 𝐶 p A 𝐶 q A p q = A p A q
36 1 35 mp3anl1 p C q C A 𝐶 p A 𝐶 q A p q = A p A q
37 34 36 mpdan p C q C A p q = A p A q
38 8 37 sylan p HAtoms q C A p q = A p A q
39 38 ad2ant2r p HAtoms p A q C q A A p q = A p A q
40 39 adantr p HAtoms p A q C q A r HAtoms r A r p q A p q = A p A q
41 18 31 40 3eqtr3d p HAtoms p A q C q A r HAtoms r A r p q A r A q = A p A q
42 sseqin2 r A A r = r
43 42 biimpi r A A r = r
44 43 ad2antlr r HAtoms r A r p q A r = r
45 44 adantl p HAtoms p A q C q A r HAtoms r A r p q A r = r
46 incom A q = q A
47 chsh q C q S
48 1 chshii A S
49 orthin q S A S q A q A = 0
50 47 48 49 sylancl q C q A q A = 0
51 50 imp q C q A q A = 0
52 46 51 eqtrid q C q A A q = 0
53 52 ad2antlr p HAtoms p A q C q A r HAtoms r A r p q A q = 0
54 45 53 oveq12d p HAtoms p A q C q A r HAtoms r A r p q A r A q = r 0
55 sseqin2 p A A p = p
56 55 biimpi p A A p = p
57 56 adantl p HAtoms p A A p = p
58 57 ad2antrr p HAtoms p A q C q A r HAtoms r A r p q A p = p
59 58 53 oveq12d p HAtoms p A q C q A r HAtoms r A r p q A p A q = p 0
60 41 54 59 3eqtr3d p HAtoms p A q C q A r HAtoms r A r p q r 0 = p 0
61 chj0 r C r 0 = r
62 6 61 syl r HAtoms r 0 = r
63 62 ad2antrr r HAtoms r A r p q r 0 = r
64 63 adantl p HAtoms p A q C q A r HAtoms r A r p q r 0 = r
65 chj0 p C p 0 = p
66 8 65 syl p HAtoms p 0 = p
67 66 ad3antrrr p HAtoms p A q C q A r HAtoms r A r p q p 0 = p
68 60 64 67 3eqtr3d p HAtoms p A q C q A r HAtoms r A r p q r = p
69 68 exp44 p HAtoms p A q C q A r HAtoms r A r p q r = p
70 69 com34 p HAtoms p A q C q A r HAtoms r p q r A r = p
71 3 70 sylanr1 p HAtoms p A q HAtoms q A r HAtoms r p q r A r = p
72 71 imp32 p HAtoms p A q HAtoms q A r HAtoms r p q r A r = p