Metamath Proof Explorer


Theorem chnsubseqwl

Description: A subsequence of a chain has the same length as its indexing sequence. (Contributed by Ender Ting, 22-Jan-2026)

Ref Expression
Hypotheses chnsubseq.1 φ W Chain A < ˙
chnsubseq.2 φ I Chain 0 ..^ W <
Assertion chnsubseqwl φ W I = I

Proof

Step Hyp Ref Expression
1 chnsubseq.1 φ W Chain A < ˙
2 chnsubseq.2 φ I Chain 0 ..^ W <
3 2 chnwrd φ I Word 0 ..^ W
4 wrdf I Word 0 ..^ W I : 0 ..^ I 0 ..^ W
5 3 4 syl φ I : 0 ..^ I 0 ..^ W
6 5 frnd φ ran I 0 ..^ W
7 1 chnwrd φ W Word A
8 wrddm W Word A dom W = 0 ..^ W
9 7 8 syl φ dom W = 0 ..^ W
10 6 9 sseqtrrd φ ran I dom W
11 dmcosseq ran I dom W dom W I = dom I
12 10 11 syl φ dom W I = dom I
13 1 2 chnsubseqword φ W I Word A
14 wrddm W I Word A dom W I = 0 ..^ W I
15 13 14 syl φ dom W I = 0 ..^ W I
16 wrddm I Word 0 ..^ W dom I = 0 ..^ I
17 3 16 syl φ dom I = 0 ..^ I
18 12 15 17 3eqtr3d φ 0 ..^ W I = 0 ..^ I
19 0z 0
20 lencl W I Word A W I 0
21 13 20 syl φ W I 0
22 21 nn0zd φ W I
23 simpr φ 0 < W I 0 < W I
24 fzoopth 0 W I 0 < W I 0 ..^ W I = 0 ..^ I 0 = 0 W I = I
25 19 22 23 24 mp3an2ani φ 0 < W I 0 ..^ W I = 0 ..^ I 0 = 0 W I = I
26 eqid 0 = 0
27 26 biantrur W I = I 0 = 0 W I = I
28 25 27 bitr4di φ 0 < W I 0 ..^ W I = 0 ..^ I W I = I
29 simpr φ 0 = W I 0 = W I
30 29 oveq2d φ 0 = W I 0 ..^ 0 = 0 ..^ W I
31 fzo0 0 ..^ 0 =
32 30 31 eqtr3di φ 0 = W I 0 ..^ W I =
33 32 eqeq1d φ 0 = W I 0 ..^ W I = 0 ..^ I = 0 ..^ I
34 eqcom = 0 ..^ I 0 ..^ I =
35 33 34 bitrdi φ 0 = W I 0 ..^ W I = 0 ..^ I 0 ..^ I =
36 0zd φ 0 = W I 0
37 lencl I Word 0 ..^ W I 0
38 3 37 syl φ I 0
39 38 nn0zd φ I
40 39 adantr φ 0 = W I I
41 fzon 0 I I 0 0 ..^ I =
42 36 40 41 syl2anc φ 0 = W I I 0 0 ..^ I =
43 nn0le0eq0 I 0 I 0 I = 0
44 43 biimpa I 0 I 0 I = 0
45 38 44 sylan φ I 0 I = 0
46 45 adantlr φ 0 = W I I 0 I = 0
47 id I = 0 I = 0
48 0le0 0 0
49 47 48 eqbrtrdi I = 0 I 0
50 49 adantl φ 0 = W I I = 0 I 0
51 46 50 impbida φ 0 = W I I 0 I = 0
52 eqcom I = 0 0 = I
53 52 a1i φ 0 = W I I = 0 0 = I
54 29 eqeq1d φ 0 = W I 0 = I W I = I
55 51 53 54 3bitrd φ 0 = W I I 0 W I = I
56 35 42 55 3bitr2d φ 0 = W I 0 ..^ W I = 0 ..^ I W I = I
57 21 nn0ge0d φ 0 W I
58 0red φ 0
59 21 nn0red φ W I
60 58 59 leloed φ 0 W I 0 < W I 0 = W I
61 57 60 mpbid φ 0 < W I 0 = W I
62 28 56 61 mpjaodan φ 0 ..^ W I = 0 ..^ I W I = I
63 18 62 mpbid φ W I = I