Metamath Proof Explorer


Theorem chtnprm

Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)

Ref Expression
Assertion chtnprm A¬A+1θA+1=θA

Proof

Step Hyp Ref Expression
1 simprr A¬A+1x2A+1x2A+1
2 1 elin2d A¬A+1x2A+1x
3 simprl A¬A+1x2A+1¬A+1
4 nelne2 x¬A+1xA+1
5 2 3 4 syl2anc A¬A+1x2A+1xA+1
6 velsn xA+1x=A+1
7 6 necon3bbii ¬xA+1xA+1
8 5 7 sylibr A¬A+1x2A+1¬xA+1
9 1 elin1d A¬A+1x2A+1x2A+1
10 2z 2
11 zcn AA
12 11 adantr A¬A+1x2A+1A
13 ax-1cn 1
14 pncan A1A+1-1=A
15 12 13 14 sylancl A¬A+1x2A+1A+1-1=A
16 elfzuz2 x2A+1A+12
17 uz2m1nn A+12A+1-1
18 9 16 17 3syl A¬A+1x2A+1A+1-1
19 15 18 eqeltrrd A¬A+1x2A+1A
20 nnuz =1
21 2m1e1 21=1
22 21 fveq2i 21=1
23 20 22 eqtr4i =21
24 19 23 eleqtrdi A¬A+1x2A+1A21
25 fzsuc2 2A212A+1=2AA+1
26 10 24 25 sylancr A¬A+1x2A+12A+1=2AA+1
27 9 26 eleqtrd A¬A+1x2A+1x2AA+1
28 elun x2AA+1x2AxA+1
29 27 28 sylib A¬A+1x2A+1x2AxA+1
30 29 ord A¬A+1x2A+1¬x2AxA+1
31 8 30 mt3d A¬A+1x2A+1x2A
32 31 2 elind A¬A+1x2A+1x2A
33 32 expr A¬A+1x2A+1x2A
34 33 ssrdv A¬A+12A+12A
35 uzid AAA
36 35 adantr A¬A+1AA
37 peano2uz AAA+1A
38 fzss2 A+1A2A2A+1
39 ssrin 2A2A+12A2A+1
40 36 37 38 39 4syl A¬A+12A2A+1
41 34 40 eqssd A¬A+12A+1=2A
42 peano2z AA+1
43 42 adantr A¬A+1A+1
44 flid A+1A+1=A+1
45 43 44 syl A¬A+1A+1=A+1
46 45 oveq2d A¬A+12A+1=2A+1
47 46 ineq1d A¬A+12A+1=2A+1
48 flid AA=A
49 48 adantr A¬A+1A=A
50 49 oveq2d A¬A+12A=2A
51 50 ineq1d A¬A+12A=2A
52 41 47 51 3eqtr4d A¬A+12A+1=2A
53 zre AA
54 53 adantr A¬A+1A
55 peano2re AA+1
56 ppisval A+10A+1=2A+1
57 54 55 56 3syl A¬A+10A+1=2A+1
58 ppisval A0A=2A
59 54 58 syl A¬A+10A=2A
60 52 57 59 3eqtr4d A¬A+10A+1=0A
61 60 sumeq1d A¬A+1p0A+1logp=p0Alogp
62 chtval A+1θA+1=p0A+1logp
63 54 55 62 3syl A¬A+1θA+1=p0A+1logp
64 chtval AθA=p0Alogp
65 54 64 syl A¬A+1θA=p0Alogp
66 61 63 65 3eqtr4d A¬A+1θA+1=θA