Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | chtnprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr | |
|
2 | 1 | elin2d | |
3 | simprl | |
|
4 | nelne2 | |
|
5 | 2 3 4 | syl2anc | |
6 | velsn | |
|
7 | 6 | necon3bbii | |
8 | 5 7 | sylibr | |
9 | 1 | elin1d | |
10 | 2z | |
|
11 | zcn | |
|
12 | 11 | adantr | |
13 | ax-1cn | |
|
14 | pncan | |
|
15 | 12 13 14 | sylancl | |
16 | elfzuz2 | |
|
17 | uz2m1nn | |
|
18 | 9 16 17 | 3syl | |
19 | 15 18 | eqeltrrd | |
20 | nnuz | |
|
21 | 2m1e1 | |
|
22 | 21 | fveq2i | |
23 | 20 22 | eqtr4i | |
24 | 19 23 | eleqtrdi | |
25 | fzsuc2 | |
|
26 | 10 24 25 | sylancr | |
27 | 9 26 | eleqtrd | |
28 | elun | |
|
29 | 27 28 | sylib | |
30 | 29 | ord | |
31 | 8 30 | mt3d | |
32 | 31 2 | elind | |
33 | 32 | expr | |
34 | 33 | ssrdv | |
35 | uzid | |
|
36 | 35 | adantr | |
37 | peano2uz | |
|
38 | fzss2 | |
|
39 | ssrin | |
|
40 | 36 37 38 39 | 4syl | |
41 | 34 40 | eqssd | |
42 | peano2z | |
|
43 | 42 | adantr | |
44 | flid | |
|
45 | 43 44 | syl | |
46 | 45 | oveq2d | |
47 | 46 | ineq1d | |
48 | flid | |
|
49 | 48 | adantr | |
50 | 49 | oveq2d | |
51 | 50 | ineq1d | |
52 | 41 47 51 | 3eqtr4d | |
53 | zre | |
|
54 | 53 | adantr | |
55 | peano2re | |
|
56 | ppisval | |
|
57 | 54 55 56 | 3syl | |
58 | ppisval | |
|
59 | 54 58 | syl | |
60 | 52 57 59 | 3eqtr4d | |
61 | 60 | sumeq1d | |
62 | chtval | |
|
63 | 54 55 62 | 3syl | |
64 | chtval | |
|
65 | 54 64 | syl | |
66 | 61 63 65 | 3eqtr4d | |