Description: Lemma 4b for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlkclwwlklem2.f | |
|
Assertion | clwlkclwwlklem2fv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlklem2.f | |
|
2 | simpr | |
|
3 | nn0z | |
|
4 | 2z | |
|
5 | 3 4 | jctir | |
6 | zsubcl | |
|
7 | 5 6 | syl | |
8 | 7 | adantr | |
9 | 8 | adantr | |
10 | 2 9 | eqeltrd | |
11 | 10 | ex | |
12 | zre | |
|
13 | nn0re | |
|
14 | 2re | |
|
15 | 14 | a1i | |
16 | 13 15 | resubcld | |
17 | 16 | adantr | |
18 | lttri3 | |
|
19 | 12 17 18 | syl2anr | |
20 | simpl | |
|
21 | 19 20 | syl6bi | |
22 | 21 | ex | |
23 | 11 22 | syld | |
24 | 23 | com13 | |
25 | 24 | pm2.43i | |
26 | 25 | impcom | |
27 | 26 | iffalsed | |
28 | fveq2 | |
|
29 | 28 | adantl | |
30 | 29 | preq1d | |
31 | 30 | fveq2d | |
32 | 27 31 | eqtrd | |
33 | 5 | adantr | |
34 | 33 6 | syl | |
35 | 13 15 | subge0d | |
36 | 35 | biimpar | |
37 | elnn0z | |
|
38 | 34 36 37 | sylanbrc | |
39 | nn0ge2m1nn | |
|
40 | 1red | |
|
41 | 14 | a1i | |
42 | 13 | adantr | |
43 | 1lt2 | |
|
44 | 43 | a1i | |
45 | 40 41 42 44 | ltsub2dd | |
46 | elfzo0 | |
|
47 | 38 39 45 46 | syl3anbrc | |
48 | fvexd | |
|
49 | 1 32 47 48 | fvmptd2 | |