Metamath Proof Explorer


Theorem clwlkclwwlklem2fv2

Description: Lemma 4b for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
Assertion clwlkclwwlklem2fv2 P02PFP2=E-1PP2P0

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
2 simpr P02Px=P2x=P2
3 nn0z P0P
4 2z 2
5 3 4 jctir P0P2
6 zsubcl P2P2
7 5 6 syl P0P2
8 7 adantr P02PP2
9 8 adantr P02Px=P2P2
10 2 9 eqeltrd P02Px=P2x
11 10 ex P02Px=P2x
12 zre xx
13 nn0re P0P
14 2re 2
15 14 a1i P02
16 13 15 resubcld P0P2
17 16 adantr P02PP2
18 lttri3 xP2x=P2¬x<P2¬P2<x
19 12 17 18 syl2anr P02Pxx=P2¬x<P2¬P2<x
20 simpl ¬x<P2¬P2<x¬x<P2
21 19 20 syl6bi P02Pxx=P2¬x<P2
22 21 ex P02Pxx=P2¬x<P2
23 11 22 syld P02Px=P2x=P2¬x<P2
24 23 com13 x=P2x=P2P02P¬x<P2
25 24 pm2.43i x=P2P02P¬x<P2
26 25 impcom P02Px=P2¬x<P2
27 26 iffalsed P02Px=P2ifx<P2E-1PxPx+1E-1PxP0=E-1PxP0
28 fveq2 x=P2Px=PP2
29 28 adantl P02Px=P2Px=PP2
30 29 preq1d P02Px=P2PxP0=PP2P0
31 30 fveq2d P02Px=P2E-1PxP0=E-1PP2P0
32 27 31 eqtrd P02Px=P2ifx<P2E-1PxPx+1E-1PxP0=E-1PP2P0
33 5 adantr P02PP2
34 33 6 syl P02PP2
35 13 15 subge0d P00P22P
36 35 biimpar P02P0P2
37 elnn0z P20P20P2
38 34 36 37 sylanbrc P02PP20
39 nn0ge2m1nn P02PP1
40 1red P02P1
41 14 a1i P02P2
42 13 adantr P02PP
43 1lt2 1<2
44 43 a1i P02P1<2
45 40 41 42 44 ltsub2dd P02PP2<P1
46 elfzo0 P20..^P1P20P1P2<P1
47 38 39 45 46 syl3anbrc P02PP20..^P1
48 fvexd P02PE-1PP2P0V
49 1 32 47 48 fvmptd2 P02PFP2=E-1PP2P0