Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknclwwlkdif.a |
|
2 |
|
clwwlknclwwlkdif.b |
|
3 |
|
clwwlknclwwlkdifnum.v |
|
4 |
|
eqid |
|
5 |
1 2 4
|
clwwlknclwwlkdif |
|
6 |
5
|
fveq2i |
|
7 |
6
|
a1i |
|
8 |
3
|
eleq1i |
|
9 |
8
|
biimpi |
|
10 |
9
|
adantl |
|
11 |
10
|
adantr |
|
12 |
|
wwlksnfi |
|
13 |
|
rabfi |
|
14 |
11 12 13
|
3syl |
|
15 |
3
|
iswwlksnon |
|
16 |
|
ancom |
|
17 |
16
|
rabbii |
|
18 |
15 17
|
eqtri |
|
19 |
18
|
a1i |
|
20 |
2 19
|
eqtrid |
|
21 |
|
simpr |
|
22 |
21
|
a1i |
|
23 |
22
|
ss2rabi |
|
24 |
20 23
|
eqsstrdi |
|
25 |
24
|
adantl |
|
26 |
|
hashssdif |
|
27 |
14 25 26
|
syl2anc |
|
28 |
|
simpl |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
30
|
adantr |
|
32 |
|
simpl |
|
33 |
32
|
adantl |
|
34 |
|
simpr |
|
35 |
34
|
adantl |
|
36 |
3
|
rusgrnumwwlkg |
|
37 |
29 31 33 35 36
|
syl13anc |
|
38 |
37
|
oveq1d |
|
39 |
7 27 38
|
3eqtrd |
|