| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknclwwlkdif.a |
|
| 2 |
|
clwwlknclwwlkdif.b |
|
| 3 |
|
clwwlknclwwlkdifnum.v |
|
| 4 |
|
eqid |
|
| 5 |
1 2 4
|
clwwlknclwwlkdif |
|
| 6 |
5
|
fveq2i |
|
| 7 |
6
|
a1i |
|
| 8 |
3
|
eleq1i |
|
| 9 |
8
|
biimpi |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
adantr |
|
| 12 |
|
wwlksnfi |
|
| 13 |
|
rabfi |
|
| 14 |
11 12 13
|
3syl |
|
| 15 |
3
|
iswwlksnon |
|
| 16 |
|
ancom |
|
| 17 |
16
|
rabbii |
|
| 18 |
15 17
|
eqtri |
|
| 19 |
18
|
a1i |
|
| 20 |
2 19
|
eqtrid |
|
| 21 |
|
simpr |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
ss2rabi |
|
| 24 |
20 23
|
eqsstrdi |
|
| 25 |
24
|
adantl |
|
| 26 |
|
hashssdif |
|
| 27 |
14 25 26
|
syl2anc |
|
| 28 |
|
simpl |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpl |
|
| 33 |
32
|
adantl |
|
| 34 |
|
simpr |
|
| 35 |
34
|
adantl |
|
| 36 |
3
|
rusgrnumwwlkg |
|
| 37 |
29 31 33 35 36
|
syl13anc |
|
| 38 |
37
|
oveq1d |
|
| 39 |
7 27 38
|
3eqtrd |
|