Metamath Proof Explorer


Theorem cmscsscms

Description: A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslssbn.x X=W𝑠U
cmscsscms.s S=ClSubSpW
Assertion cmscsscms WCMetSpWCPreHilUSXCMetSp

Proof

Step Hyp Ref Expression
1 cmslssbn.x X=W𝑠U
2 cmscsscms.s S=ClSubSpW
3 cmsms WCMetSpWMetSp
4 3 adantr WCMetSpWCPreHilWMetSp
5 ressms WMetSpUSW𝑠UMetSp
6 4 5 sylan WCMetSpWCPreHilUSW𝑠UMetSp
7 1 6 eqeltrid WCMetSpWCPreHilUSXMetSp
8 cphlmod WCPreHilWLMod
9 8 adantl WCMetSpWCPreHilWLMod
10 9 adantr WCMetSpWCPreHilUSWLMod
11 cphphl WCPreHilWPreHil
12 11 adantl WCMetSpWCPreHilWPreHil
13 eqid LSubSpW=LSubSpW
14 2 13 csslss WPreHilUSULSubSpW
15 12 14 sylan WCMetSpWCPreHilUSULSubSpW
16 13 lsssubg WLModULSubSpWUSubGrpW
17 10 15 16 syl2anc WCMetSpWCPreHilUSUSubGrpW
18 1 subgbas USubGrpWU=BaseX
19 17 18 syl WCMetSpWCPreHilUSU=BaseX
20 eqid TopOpenW=TopOpenW
21 2 20 csscld WCPreHilUSUClsdTopOpenW
22 21 adantll WCMetSpWCPreHilUSUClsdTopOpenW
23 19 22 eqeltrrd WCMetSpWCPreHilUSBaseXClsdTopOpenW
24 eqid distW=distW
25 1 24 ressds USdistW=distX
26 25 adantl WCMetSpWCPreHilUSdistW=distX
27 26 eqcomd WCMetSpWCPreHilUSdistX=distW
28 27 reseq1d WCMetSpWCPreHilUSdistXBaseX×BaseX=distWBaseX×BaseX
29 19 17 eqeltrrd WCMetSpWCPreHilUSBaseXSubGrpW
30 eqid BaseW=BaseW
31 30 subgss BaseXSubGrpWBaseXBaseW
32 29 31 syl WCMetSpWCPreHilUSBaseXBaseW
33 xpss12 BaseXBaseWBaseXBaseWBaseX×BaseXBaseW×BaseW
34 32 32 33 syl2anc WCMetSpWCPreHilUSBaseX×BaseXBaseW×BaseW
35 34 resabs1d WCMetSpWCPreHilUSdistWBaseW×BaseWBaseX×BaseX=distWBaseX×BaseX
36 28 35 eqtr4d WCMetSpWCPreHilUSdistXBaseX×BaseX=distWBaseW×BaseWBaseX×BaseX
37 36 eleq1d WCMetSpWCPreHilUSdistXBaseX×BaseXCMetBaseXdistWBaseW×BaseWBaseX×BaseXCMetBaseX
38 eqid distWBaseW×BaseW=distWBaseW×BaseW
39 30 38 cmscmet WCMetSpdistWBaseW×BaseWCMetBaseW
40 39 adantr WCMetSpWCPreHildistWBaseW×BaseWCMetBaseW
41 40 adantr WCMetSpWCPreHilUSdistWBaseW×BaseWCMetBaseW
42 eqid MetOpendistWBaseW×BaseW=MetOpendistWBaseW×BaseW
43 42 cmetss distWBaseW×BaseWCMetBaseWdistWBaseW×BaseWBaseX×BaseXCMetBaseXBaseXClsdMetOpendistWBaseW×BaseW
44 41 43 syl WCMetSpWCPreHilUSdistWBaseW×BaseWBaseX×BaseXCMetBaseXBaseXClsdMetOpendistWBaseW×BaseW
45 4 adantr WCMetSpWCPreHilUSWMetSp
46 20 30 38 mstopn WMetSpTopOpenW=MetOpendistWBaseW×BaseW
47 45 46 syl WCMetSpWCPreHilUSTopOpenW=MetOpendistWBaseW×BaseW
48 47 eqcomd WCMetSpWCPreHilUSMetOpendistWBaseW×BaseW=TopOpenW
49 48 fveq2d WCMetSpWCPreHilUSClsdMetOpendistWBaseW×BaseW=ClsdTopOpenW
50 49 eleq2d WCMetSpWCPreHilUSBaseXClsdMetOpendistWBaseW×BaseWBaseXClsdTopOpenW
51 37 44 50 3bitrd WCMetSpWCPreHilUSdistXBaseX×BaseXCMetBaseXBaseXClsdTopOpenW
52 23 51 mpbird WCMetSpWCPreHilUSdistXBaseX×BaseXCMetBaseX
53 eqid BaseX=BaseX
54 eqid distXBaseX×BaseX=distXBaseX×BaseX
55 53 54 iscms XCMetSpXMetSpdistXBaseX×BaseXCMetBaseX
56 7 52 55 sylanbrc WCMetSpWCPreHilUSXCMetSp