Metamath Proof Explorer


Theorem cnblcld

Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis cnblcld.1 D=abs
Assertion cnblcld R*abs-10R=x|0DxR

Proof

Step Hyp Ref Expression
1 cnblcld.1 D=abs
2 absf abs:
3 ffn abs:absFn
4 elpreima absFnxabs-10Rxx0R
5 2 3 4 mp2b xabs-10Rxx0R
6 df-3an x*0xxRx*0xxR
7 abscl xx
8 7 rexrd xx*
9 absge0 x0x
10 8 9 jca xx*0x
11 10 adantl R*xx*0x
12 11 biantrurd R*xxRx*0xxR
13 6 12 bitr4id R*xx*0xxRxR
14 0xr 0*
15 simpl R*xR*
16 elicc1 0*R*x0Rx*0xxR
17 14 15 16 sylancr R*xx0Rx*0xxR
18 0cn 0
19 1 cnmetdval 0x0Dx=0x
20 abssub 0x0x=x0
21 19 20 eqtrd 0x0Dx=x0
22 18 21 mpan x0Dx=x0
23 subid1 xx0=x
24 23 fveq2d xx0=x
25 22 24 eqtrd x0Dx=x
26 25 adantl R*x0Dx=x
27 26 breq1d R*x0DxRxR
28 13 17 27 3bitr4d R*xx0R0DxR
29 28 pm5.32da R*xx0Rx0DxR
30 5 29 bitrid R*xabs-10Rx0DxR
31 30 eqabdv R*abs-10R=x|x0DxR
32 df-rab x|0DxR=x|x0DxR
33 31 32 eqtr4di R*abs-10R=x|0DxR