Metamath Proof Explorer


Theorem cnfsmf

Description: A continuous function is measurable. Proposition 121D (b) of Fremlin1 p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfsmf.1 φ J Top
cnfsmf.k K = topGen ran .
cnfsmf.f φ F J 𝑡 dom F Cn K
cnfsmf.s S = SalGen J
Assertion cnfsmf φ F SMblFn S

Proof

Step Hyp Ref Expression
1 cnfsmf.1 φ J Top
2 cnfsmf.k K = topGen ran .
3 cnfsmf.f φ F J 𝑡 dom F Cn K
4 cnfsmf.s S = SalGen J
5 nfv a φ
6 1 4 salgencld φ S SAlg
7 eqid J 𝑡 dom F = J 𝑡 dom F
8 eqid K = K
9 7 8 cnf F J 𝑡 dom F Cn K F : J 𝑡 dom F K
10 3 9 syl φ F : J 𝑡 dom F K
11 10 fdmd φ dom F = J 𝑡 dom F
12 ovex J 𝑡 dom F V
13 12 uniex J 𝑡 dom F V
14 13 a1i φ J 𝑡 dom F V
15 11 14 eqeltrd φ dom F V
16 1 15 unirestss φ J 𝑡 dom F J
17 4 sssalgen J Top J S
18 1 17 syl φ J S
19 18 unissd φ J S
20 16 19 sstrd φ J 𝑡 dom F S
21 11 20 eqsstrd φ dom F S
22 uniretop = topGen ran .
23 2 unieqi K = topGen ran .
24 22 23 eqtr4i = K
25 24 a1i φ = K
26 25 feq3d φ F : J 𝑡 dom F F : J 𝑡 dom F K
27 10 26 mpbird φ F : J 𝑡 dom F
28 27 ffdmd φ F : dom F
29 ssrest S SAlg J S J 𝑡 dom F S 𝑡 dom F
30 6 18 29 syl2anc φ J 𝑡 dom F S 𝑡 dom F
31 30 adantr φ a J 𝑡 dom F S 𝑡 dom F
32 11 rabeqdv φ x dom F | F x < a = x J 𝑡 dom F | F x < a
33 32 adantr φ a x dom F | F x < a = x J 𝑡 dom F | F x < a
34 nfcv _ x a
35 nfcv _ x F
36 nfv x φ a
37 eqid x J 𝑡 dom F | F x < a = x J 𝑡 dom F | F x < a
38 rexr a a *
39 38 adantl φ a a *
40 3 adantr φ a F J 𝑡 dom F Cn K
41 34 35 36 2 7 37 39 40 rfcnpre2 φ a x J 𝑡 dom F | F x < a J 𝑡 dom F
42 33 41 eqeltrd φ a x dom F | F x < a J 𝑡 dom F
43 31 42 sseldd φ a x dom F | F x < a S 𝑡 dom F
44 5 6 21 28 43 issmfd φ F SMblFn S