Metamath Proof Explorer


Theorem cniccbdd

Description: A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Assertion cniccbdd ABF:ABcnxyABFyx

Proof

Step Hyp Ref Expression
1 0re 0
2 ral0 yFy0
3 simp1 ABF:ABcnA
4 3 rexrd ABF:ABcnA*
5 simp2 ABF:ABcnB
6 5 rexrd ABF:ABcnB*
7 icc0 A*B*AB=B<A
8 4 6 7 syl2anc ABF:ABcnAB=B<A
9 8 biimpar ABF:ABcnB<AAB=
10 9 raleqdv ABF:ABcnB<AyABFy0yFy0
11 2 10 mpbiri ABF:ABcnB<AyABFy0
12 brralrspcev 0yABFy0xyABFyx
13 1 11 12 sylancr ABF:ABcnB<AxyABFyx
14 3 adantr ABF:ABcnABA
15 5 adantr ABF:ABcnABB
16 simpr ABF:ABcnABAB
17 simp3 ABF:ABcnF:ABcn
18 abscncf abs:cn
19 18 a1i ABF:ABcnabs:cn
20 17 19 cncfco ABF:ABcnabsF:ABcn
21 20 adantr ABF:ABcnABabsF:ABcn
22 14 15 16 21 evthicc ABF:ABcnABzAByABabsFyabsFzzAByABabsFzabsFy
23 22 simpld ABF:ABcnABzAByABabsFyabsFz
24 cncff absF:ABcnabsF:AB
25 20 24 syl ABF:ABcnabsF:AB
26 25 ffvelcdmda ABF:ABcnzABabsFz
27 cncff F:ABcnF:AB
28 17 27 syl ABF:ABcnF:AB
29 28 adantr ABF:ABcnzABF:AB
30 fvco3 F:AByABabsFy=Fy
31 29 30 sylan ABF:ABcnzAByABabsFy=Fy
32 31 breq1d ABF:ABcnzAByABabsFyabsFzFyabsFz
33 32 ralbidva ABF:ABcnzAByABabsFyabsFzyABFyabsFz
34 33 biimpd ABF:ABcnzAByABabsFyabsFzyABFyabsFz
35 brralrspcev absFzyABFyabsFzxyABFyx
36 26 34 35 syl6an ABF:ABcnzAByABabsFyabsFzxyABFyx
37 36 rexlimdva ABF:ABcnzAByABabsFyabsFzxyABFyx
38 37 imp ABF:ABcnzAByABabsFyabsFzxyABFyx
39 23 38 syldan ABF:ABcnABxyABFyx
40 13 39 5 3 ltlecasei ABF:ABcnxyABFyx