Description: A continuous function on a closed interval is bounded. (Contributed by Mario Carneiro, 7-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cniccbdd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | ral0 | |
|
3 | simp1 | |
|
4 | 3 | rexrd | |
5 | simp2 | |
|
6 | 5 | rexrd | |
7 | icc0 | |
|
8 | 4 6 7 | syl2anc | |
9 | 8 | biimpar | |
10 | 9 | raleqdv | |
11 | 2 10 | mpbiri | |
12 | brralrspcev | |
|
13 | 1 11 12 | sylancr | |
14 | 3 | adantr | |
15 | 5 | adantr | |
16 | simpr | |
|
17 | simp3 | |
|
18 | abscncf | |
|
19 | 18 | a1i | |
20 | 17 19 | cncfco | |
21 | 20 | adantr | |
22 | 14 15 16 21 | evthicc | |
23 | 22 | simpld | |
24 | cncff | |
|
25 | 20 24 | syl | |
26 | 25 | ffvelcdmda | |
27 | cncff | |
|
28 | 17 27 | syl | |
29 | 28 | adantr | |
30 | fvco3 | |
|
31 | 29 30 | sylan | |
32 | 31 | breq1d | |
33 | 32 | ralbidva | |
34 | 33 | biimpd | |
35 | brralrspcev | |
|
36 | 26 34 35 | syl6an | |
37 | 36 | rexlimdva | |
38 | 37 | imp | |
39 | 23 38 | syldan | |
40 | 13 39 5 3 | ltlecasei | |