Description: The set of complex numbers is a left module over itself. The vector operation is + , and the scalar product is x. . (Contributed by AV, 20-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnlmod.w | |
|
Assertion | cnlmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlmod.w | |
|
2 | 0cn | |
|
3 | 1 | cnlmodlem1 | |
4 | 3 | eqcomi | |
5 | 4 | a1i | |
6 | 1 | cnlmodlem2 | |
7 | 6 | eqcomi | |
8 | 7 | a1i | |
9 | addcl | |
|
10 | 9 | 3adant1 | |
11 | addass | |
|
12 | 11 | adantl | |
13 | id | |
|
14 | addlid | |
|
15 | 14 | adantl | |
16 | negcl | |
|
17 | 16 | adantl | |
18 | id | |
|
19 | 16 18 | addcomd | |
20 | 19 | adantl | |
21 | negid | |
|
22 | 21 | adantl | |
23 | 20 22 | eqtrd | |
24 | 5 8 10 12 13 15 17 23 | isgrpd | |
25 | 4 | a1i | |
26 | 7 | a1i | |
27 | 1 | cnlmodlem3 | |
28 | 27 | eqcomi | |
29 | 28 | a1i | |
30 | 1 | cnlmod4 | |
31 | 30 | eqcomi | |
32 | 31 | a1i | |
33 | cnfldbas | |
|
34 | 33 | a1i | |
35 | cnfldadd | |
|
36 | 35 | a1i | |
37 | cnfldmul | |
|
38 | 37 | a1i | |
39 | cnfld1 | |
|
40 | 39 | a1i | |
41 | cnring | |
|
42 | 41 | a1i | |
43 | id | |
|
44 | mulcl | |
|
45 | 44 | 3adant1 | |
46 | adddi | |
|
47 | 46 | adantl | |
48 | adddir | |
|
49 | 48 | adantl | |
50 | mulass | |
|
51 | 50 | adantl | |
52 | mullid | |
|
53 | 52 | adantl | |
54 | 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 | islmodd | |
55 | 2 24 54 | mp2b | |