Metamath Proof Explorer


Theorem cnlmod

Description: The set of complex numbers is a left module over itself. The vector operation is + , and the scalar product is x. . (Contributed by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
Assertion cnlmod WLMod

Proof

Step Hyp Ref Expression
1 cnlmod.w W=Basendx+ndx+Scalarndxfldndx×
2 0cn 0
3 1 cnlmodlem1 BaseW=
4 3 eqcomi =BaseW
5 4 a1i 0=BaseW
6 1 cnlmodlem2 +W=+
7 6 eqcomi +=+W
8 7 a1i 0+=+W
9 addcl xyx+y
10 9 3adant1 0xyx+y
11 addass xyzx+y+z=x+y+z
12 11 adantl 0xyzx+y+z=x+y+z
13 id 00
14 addlid x0+x=x
15 14 adantl 0x0+x=x
16 negcl xx
17 16 adantl 0xx
18 id xx
19 16 18 addcomd x-x+x=x+x
20 19 adantl 0x-x+x=x+x
21 negid xx+x=0
22 21 adantl 0xx+x=0
23 20 22 eqtrd 0x-x+x=0
24 5 8 10 12 13 15 17 23 isgrpd 0WGrp
25 4 a1i WGrp=BaseW
26 7 a1i WGrp+=+W
27 1 cnlmodlem3 ScalarW=fld
28 27 eqcomi fld=ScalarW
29 28 a1i WGrpfld=ScalarW
30 1 cnlmod4 W=×
31 30 eqcomi ×=W
32 31 a1i WGrp×=W
33 cnfldbas =Basefld
34 33 a1i WGrp=Basefld
35 cnfldadd +=+fld
36 35 a1i WGrp+=+fld
37 cnfldmul ×=fld
38 37 a1i WGrp×=fld
39 cnfld1 1=1fld
40 39 a1i WGrp1=1fld
41 cnring fldRing
42 41 a1i WGrpfldRing
43 id WGrpWGrp
44 mulcl xyxy
45 44 3adant1 WGrpxyxy
46 adddi xyzxy+z=xy+xz
47 46 adantl WGrpxyzxy+z=xy+xz
48 adddir xyzx+yz=xz+yz
49 48 adantl WGrpxyzx+yz=xz+yz
50 mulass xyzxyz=xyz
51 50 adantl WGrpxyzxyz=xyz
52 mullid x1x=x
53 52 adantl WGrpx1x=x
54 25 26 29 32 34 36 38 40 42 43 45 47 49 51 53 islmodd WGrpWLMod
55 2 24 54 mp2b WLMod