| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnplimc.k |
|
| 2 |
|
cnplimc.j |
|
| 3 |
1
|
cnfldtopon |
|
| 4 |
|
simpl |
|
| 5 |
|
resttopon |
|
| 6 |
3 4 5
|
sylancr |
|
| 7 |
2 6
|
eqeltrid |
|
| 8 |
|
cnpf2 |
|
| 9 |
8
|
3expia |
|
| 10 |
7 3 9
|
sylancl |
|
| 11 |
10
|
pm4.71rd |
|
| 12 |
|
simpr |
|
| 13 |
|
simplr |
|
| 14 |
13
|
snssd |
|
| 15 |
|
ssequn2 |
|
| 16 |
14 15
|
sylib |
|
| 17 |
16
|
feq2d |
|
| 18 |
12 17
|
mpbird |
|
| 19 |
18
|
feqmptd |
|
| 20 |
16
|
oveq2d |
|
| 21 |
2 20
|
eqtr4id |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
fveq1d |
|
| 24 |
19 23
|
eleq12d |
|
| 25 |
|
eqid |
|
| 26 |
|
ifid |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
adantl |
|
| 29 |
28
|
ifeq1da |
|
| 30 |
26 29
|
eqtr3id |
|
| 31 |
30
|
mpteq2ia |
|
| 32 |
|
simpll |
|
| 33 |
32 13
|
sseldd |
|
| 34 |
25 1 31 12 32 33
|
ellimc |
|
| 35 |
24 34
|
bitr4d |
|
| 36 |
35
|
pm5.32da |
|
| 37 |
11 36
|
bitrd |
|