Metamath Proof Explorer


Theorem cnplimc

Description: A function is continuous at B iff its limit at B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnplimc.k K=TopOpenfld
cnplimc.j J=K𝑡A
Assertion cnplimc ABAFJCnPKBF:AFBFlimB

Proof

Step Hyp Ref Expression
1 cnplimc.k K=TopOpenfld
2 cnplimc.j J=K𝑡A
3 1 cnfldtopon KTopOn
4 simpl ABAA
5 resttopon KTopOnAK𝑡ATopOnA
6 3 4 5 sylancr ABAK𝑡ATopOnA
7 2 6 eqeltrid ABAJTopOnA
8 cnpf2 JTopOnAKTopOnFJCnPKBF:A
9 8 3expia JTopOnAKTopOnFJCnPKBF:A
10 7 3 9 sylancl ABAFJCnPKBF:A
11 10 pm4.71rd ABAFJCnPKBF:AFJCnPKB
12 simpr ABAF:AF:A
13 simplr ABAF:ABA
14 13 snssd ABAF:ABA
15 ssequn2 BAAB=A
16 14 15 sylib ABAF:AAB=A
17 16 feq2d ABAF:AF:ABF:A
18 12 17 mpbird ABAF:AF:AB
19 18 feqmptd ABAF:AF=xABFx
20 16 oveq2d ABAF:AK𝑡AB=K𝑡A
21 2 20 eqtr4id ABAF:AJ=K𝑡AB
22 21 oveq1d ABAF:AJCnPK=K𝑡ABCnPK
23 22 fveq1d ABAF:AJCnPKB=K𝑡ABCnPKB
24 19 23 eleq12d ABAF:AFJCnPKBxABFxK𝑡ABCnPKB
25 eqid K𝑡AB=K𝑡AB
26 ifid ifx=BFxFx=Fx
27 fveq2 x=BFx=FB
28 27 adantl xABx=BFx=FB
29 28 ifeq1da xABifx=BFxFx=ifx=BFBFx
30 26 29 eqtr3id xABFx=ifx=BFBFx
31 30 mpteq2ia xABFx=xABifx=BFBFx
32 simpll ABAF:AA
33 32 13 sseldd ABAF:AB
34 25 1 31 12 32 33 ellimc ABAF:AFBFlimBxABFxK𝑡ABCnPKB
35 24 34 bitr4d ABAF:AFJCnPKBFBFlimB
36 35 pm5.32da ABAF:AFJCnPKBF:AFBFlimB
37 11 36 bitrd ABAFJCnPKBF:AFBFlimB