Metamath Proof Explorer


Theorem cnreeu

Description: The reals in the expression given by cnre uniquely define a complex number. (Contributed by SN, 27-Jun-2024)

Ref Expression
Hypotheses cnreeu.r φr
cnreeu.s φs
cnreeu.t φt
cnreeu.u φu
Assertion cnreeu φr+is=t+iur=ts=u

Proof

Step Hyp Ref Expression
1 cnreeu.r φr
2 cnreeu.s φs
3 cnreeu.t φt
4 cnreeu.u φu
5 oveq1 r+is=t+iur+is+i0-s=t+iu+i0-s
6 5 oveq2d r+is=t+iu0-t+r+is+i0-s=0-t+t+iu+i0-s
7 1 recnd φr
8 ax-icn i
9 8 a1i φi
10 2 recnd φs
11 9 10 mulcld φis
12 rernegcl s0-s
13 2 12 syl φ0-s
14 13 recnd φ0-s
15 9 14 mulcld φi0-s
16 7 11 15 addassd φr+is+i0-s=r+is+i0-s
17 renegid ss+0-s=0
18 2 17 syl φs+0-s=0
19 18 oveq2d φis+0-s=i0
20 9 10 14 adddid φis+0-s=is+i0-s
21 sn-it0e0 i0=0
22 21 a1i φi0=0
23 19 20 22 3eqtr3d φis+i0-s=0
24 23 oveq2d φr+is+i0-s=r+0
25 readdrid rr+0=r
26 1 25 syl φr+0=r
27 16 24 26 3eqtrd φr+is+i0-s=r
28 27 oveq2d φ0-t+r+is+i0-s=0-t+r
29 rernegcl t0-t
30 3 29 syl φ0-t
31 30 recnd φ0-t
32 3 recnd φt
33 4 recnd φu
34 9 33 mulcld φiu
35 31 32 34 addassd φ0-t+t+iu=0-t+t+iu
36 35 oveq1d φ0-t+t+iu+i0-s=0-t+t+iu+i0-s
37 sn-addlid iu0+iu=iu
38 34 37 syl φ0+iu=iu
39 38 oveq1d φ0+iu+i0-s=iu+i0-s
40 renegid2 t0-t+t=0
41 3 40 syl φ0-t+t=0
42 41 oveq1d φ0-t+t+iu=0+iu
43 42 oveq1d φ0-t+t+iu+i0-s=0+iu+i0-s
44 9 33 14 adddid φiu+0-s=iu+i0-s
45 39 43 44 3eqtr4d φ0-t+t+iu+i0-s=iu+0-s
46 32 34 addcld φt+iu
47 31 46 15 addassd φ0-t+t+iu+i0-s=0-t+t+iu+i0-s
48 36 45 47 3eqtr3rd φ0-t+t+iu+i0-s=iu+0-s
49 28 48 eqeq12d φ0-t+r+is+i0-s=0-t+t+iu+i0-s0-t+r=iu+0-s
50 49 biimpa φ0-t+r+is+i0-s=0-t+t+iu+i0-s0-t+r=iu+0-s
51 simpr φ0-t+r=iu+0-s0-t+r=iu+0-s
52 4 adantr φ0-t+r=iu+0-su
53 13 adantr φ0-t+r=iu+0-s0-s
54 52 53 readdcld φ0-t+r=iu+0-su+0-s
55 30 adantr φ0-t+r=iu+0-s0-t
56 1 adantr φ0-t+r=iu+0-sr
57 55 56 readdcld φ0-t+r=iu+0-s0-t+r
58 51 57 eqeltrrd φ0-t+r=iu+0-siu+0-s
59 sn-itrere u+0-siu+0-su+0-s=0
60 59 biimpa u+0-siu+0-su+0-s=0
61 54 58 60 syl2anc φ0-t+r=iu+0-su+0-s=0
62 61 oveq2d φ0-t+r=iu+0-siu+0-s=i0
63 21 a1i φ0-t+r=iu+0-si0=0
64 51 62 63 3eqtrd φ0-t+r=iu+0-s0-t+r=0
65 oveq2 0-t+r=0t+0-t+r=t+0
66 65 adantl φ0-t+r=0t+0-t+r=t+0
67 renegid tt+0-t=0
68 3 67 syl φt+0-t=0
69 68 adantr φ0-t+r=0t+0-t=0
70 69 oveq1d φ0-t+r=0t+0-t+r=0+r
71 32 adantr φ0-t+r=0t
72 31 adantr φ0-t+r=00-t
73 7 adantr φ0-t+r=0r
74 71 72 73 addassd φ0-t+r=0t+0-t+r=t+0-t+r
75 readdlid r0+r=r
76 1 75 syl φ0+r=r
77 76 adantr φ0-t+r=00+r=r
78 70 74 77 3eqtr3d φ0-t+r=0t+0-t+r=r
79 3 adantr φ0-t+r=0t
80 readdrid tt+0=t
81 79 80 syl φ0-t+r=0t+0=t
82 66 78 81 3eqtr3d φ0-t+r=0r=t
83 64 82 syldan φ0-t+r=iu+0-sr=t
84 33 14 10 addassd φu+0-s+s=u+0-s+s
85 renegid2 s0-s+s=0
86 2 85 syl φ0-s+s=0
87 86 oveq2d φu+0-s+s=u+0
88 readdrid uu+0=u
89 4 88 syl φu+0=u
90 84 87 89 3eqtrd φu+0-s+s=u
91 oveq1 u+0-s=0u+0-s+s=0+s
92 90 91 sylan9req φu+0-s=0u=0+s
93 readdlid s0+s=s
94 2 93 syl φ0+s=s
95 94 adantr φu+0-s=00+s=s
96 92 95 eqtr2d φu+0-s=0s=u
97 61 96 syldan φ0-t+r=iu+0-ss=u
98 83 97 jca φ0-t+r=iu+0-sr=ts=u
99 50 98 syldan φ0-t+r+is+i0-s=0-t+t+iu+i0-sr=ts=u
100 99 ex φ0-t+r+is+i0-s=0-t+t+iu+i0-sr=ts=u
101 6 100 syl5 φr+is=t+iur=ts=u
102 id r=tr=t
103 oveq2 s=uis=iu
104 102 103 oveqan12d r=ts=ur+is=t+iu
105 101 104 impbid1 φr+is=t+iur=ts=u