Metamath Proof Explorer


Theorem coe1add

Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015)

Ref Expression
Hypotheses coe1add.y Y=Poly1R
coe1add.b B=BaseY
coe1add.p ˙=+Y
coe1add.q +˙=+R
Assertion coe1add RRingFBGBcoe1F˙G=coe1F+˙fcoe1G

Proof

Step Hyp Ref Expression
1 coe1add.y Y=Poly1R
2 coe1add.b B=BaseY
3 coe1add.p ˙=+Y
4 coe1add.q +˙=+R
5 eqid 1𝑜mPolyR=1𝑜mPolyR
6 eqid PwSer1R=PwSer1R
7 1 6 2 ply1bas B=Base1𝑜mPolyR
8 1 5 3 ply1plusg ˙=+1𝑜mPolyR
9 simp2 RRingFBGBFB
10 simp3 RRingFBGBGB
11 5 7 4 8 9 10 mpladd RRingFBGBF˙G=F+˙fG
12 11 coeq1d RRingFBGBF˙Ga01𝑜×a=F+˙fGa01𝑜×a
13 eqid BaseR=BaseR
14 1 2 13 ply1basf FBF:01𝑜BaseR
15 14 ffnd FBFFn01𝑜
16 15 3ad2ant2 RRingFBGBFFn01𝑜
17 1 2 13 ply1basf GBG:01𝑜BaseR
18 17 ffnd GBGFn01𝑜
19 18 3ad2ant3 RRingFBGBGFn01𝑜
20 df1o2 1𝑜=
21 nn0ex 0V
22 0ex V
23 eqid a01𝑜×a=a01𝑜×a
24 20 21 22 23 mapsnf1o3 a01𝑜×a:01-1 onto01𝑜
25 f1of a01𝑜×a:01-1 onto01𝑜a01𝑜×a:001𝑜
26 24 25 mp1i RRingFBGBa01𝑜×a:001𝑜
27 ovexd RRingFBGB01𝑜V
28 21 a1i RRingFBGB0V
29 inidm 01𝑜01𝑜=01𝑜
30 16 19 26 27 27 28 29 ofco RRingFBGBF+˙fGa01𝑜×a=Fa01𝑜×a+˙fGa01𝑜×a
31 12 30 eqtrd RRingFBGBF˙Ga01𝑜×a=Fa01𝑜×a+˙fGa01𝑜×a
32 1 ply1ring RRingYRing
33 2 3 ringacl YRingFBGBF˙GB
34 32 33 syl3an1 RRingFBGBF˙GB
35 eqid coe1F˙G=coe1F˙G
36 35 2 1 23 coe1fval2 F˙GBcoe1F˙G=F˙Ga01𝑜×a
37 34 36 syl RRingFBGBcoe1F˙G=F˙Ga01𝑜×a
38 eqid coe1F=coe1F
39 38 2 1 23 coe1fval2 FBcoe1F=Fa01𝑜×a
40 39 3ad2ant2 RRingFBGBcoe1F=Fa01𝑜×a
41 eqid coe1G=coe1G
42 41 2 1 23 coe1fval2 GBcoe1G=Ga01𝑜×a
43 42 3ad2ant3 RRingFBGBcoe1G=Ga01𝑜×a
44 40 43 oveq12d RRingFBGBcoe1F+˙fcoe1G=Fa01𝑜×a+˙fGa01𝑜×a
45 31 37 44 3eqtr4d RRingFBGBcoe1F˙G=coe1F+˙fcoe1G