Metamath Proof Explorer


Theorem coe1fzgsumdlem

Description: Lemma for coe1fzgsumd (induction step). (Contributed by AV, 8-Oct-2019)

Ref Expression
Hypotheses coe1fzgsumd.p P = Poly 1 R
coe1fzgsumd.b B = Base P
coe1fzgsumd.r φ R Ring
coe1fzgsumd.k φ K 0
Assertion coe1fzgsumdlem m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m a M B coe 1 P x m a M K = R x m a coe 1 M K

Proof

Step Hyp Ref Expression
1 coe1fzgsumd.p P = Poly 1 R
2 coe1fzgsumd.b B = Base P
3 coe1fzgsumd.r φ R Ring
4 coe1fzgsumd.k φ K 0
5 ralunb x m a M B x m M B x a M B
6 nfcv _ y M
7 nfcsb1v _ x y / x M
8 csbeq1a x = y M = y / x M
9 6 7 8 cbvmpt x m a M = y m a y / x M
10 9 oveq2i P x m a M = P y m a y / x M
11 eqid + P = + P
12 1 ply1ring R Ring P Ring
13 3 12 syl φ P Ring
14 ringcmn P Ring P CMnd
15 13 14 syl φ P CMnd
16 15 3ad2ant3 m Fin ¬ a m φ P CMnd
17 16 ad2antrr m Fin ¬ a m φ x m M B x a M B P CMnd
18 simpll1 m Fin ¬ a m φ x m M B x a M B m Fin
19 rspcsbela y m x m M B y / x M B
20 19 expcom x m M B y m y / x M B
21 20 adantl m Fin ¬ a m φ x m M B y m y / x M B
22 21 adantr m Fin ¬ a m φ x m M B x a M B y m y / x M B
23 22 imp m Fin ¬ a m φ x m M B x a M B y m y / x M B
24 vex a V
25 24 a1i m Fin ¬ a m φ x m M B x a M B a V
26 simpll2 m Fin ¬ a m φ x m M B x a M B ¬ a m
27 vsnid a a
28 rspcsbela a a x a M B a / x M B
29 27 28 mpan x a M B a / x M B
30 29 adantl m Fin ¬ a m φ x m M B x a M B a / x M B
31 csbeq1 y = a y / x M = a / x M
32 2 11 17 18 23 25 26 30 31 gsumunsn m Fin ¬ a m φ x m M B x a M B P y m a y / x M = P y m y / x M + P a / x M
33 10 32 eqtrid m Fin ¬ a m φ x m M B x a M B P x m a M = P y m y / x M + P a / x M
34 6 7 8 cbvmpt x m M = y m y / x M
35 34 eqcomi y m y / x M = x m M
36 35 oveq2i P y m y / x M = P x m M
37 36 oveq1i P y m y / x M + P a / x M = P x m M + P a / x M
38 33 37 eqtrdi m Fin ¬ a m φ x m M B x a M B P x m a M = P x m M + P a / x M
39 38 fveq2d m Fin ¬ a m φ x m M B x a M B coe 1 P x m a M = coe 1 P x m M + P a / x M
40 39 fveq1d m Fin ¬ a m φ x m M B x a M B coe 1 P x m a M K = coe 1 P x m M + P a / x M K
41 3 3ad2ant3 m Fin ¬ a m φ R Ring
42 41 ad2antrr m Fin ¬ a m φ x m M B x a M B R Ring
43 simplr m Fin ¬ a m φ x m M B x a M B x m M B
44 2 17 18 43 gsummptcl m Fin ¬ a m φ x m M B x a M B P x m M B
45 4 3ad2ant3 m Fin ¬ a m φ K 0
46 45 ad2antrr m Fin ¬ a m φ x m M B x a M B K 0
47 eqid + R = + R
48 1 2 11 47 coe1addfv R Ring P x m M B a / x M B K 0 coe 1 P x m M + P a / x M K = coe 1 P x m M K + R coe 1 a / x M K
49 42 44 30 46 48 syl31anc m Fin ¬ a m φ x m M B x a M B coe 1 P x m M + P a / x M K = coe 1 P x m M K + R coe 1 a / x M K
50 40 49 eqtrd m Fin ¬ a m φ x m M B x a M B coe 1 P x m a M K = coe 1 P x m M K + R coe 1 a / x M K
51 oveq1 coe 1 P x m M K = R x m coe 1 M K coe 1 P x m M K + R coe 1 a / x M K = R x m coe 1 M K + R coe 1 a / x M K
52 50 51 sylan9eq m Fin ¬ a m φ x m M B x a M B coe 1 P x m M K = R x m coe 1 M K coe 1 P x m a M K = R x m coe 1 M K + R coe 1 a / x M K
53 nfcv _ y coe 1 M K
54 nfcsb1v _ x y / x coe 1 M K
55 csbeq1a x = y coe 1 M K = y / x coe 1 M K
56 53 54 55 cbvmpt x m a coe 1 M K = y m a y / x coe 1 M K
57 56 oveq2i R x m a coe 1 M K = R y m a y / x coe 1 M K
58 eqid Base R = Base R
59 ringcmn R Ring R CMnd
60 3 59 syl φ R CMnd
61 60 3ad2ant3 m Fin ¬ a m φ R CMnd
62 61 ad2antrr m Fin ¬ a m φ x m M B x a M B R CMnd
63 csbfv12 y / x coe 1 M K = y / x coe 1 M y / x K
64 csbfv2g y V y / x coe 1 M = coe 1 y / x M
65 64 elv y / x coe 1 M = coe 1 y / x M
66 csbconstg y V y / x K = K
67 66 elv y / x K = K
68 65 67 fveq12i y / x coe 1 M y / x K = coe 1 y / x M K
69 63 68 eqtri y / x coe 1 M K = coe 1 y / x M K
70 eqid coe 1 y / x M = coe 1 y / x M
71 70 2 1 58 coe1f y / x M B coe 1 y / x M : 0 Base R
72 23 71 syl m Fin ¬ a m φ x m M B x a M B y m coe 1 y / x M : 0 Base R
73 45 adantr m Fin ¬ a m φ x m M B K 0
74 73 ad2antrr m Fin ¬ a m φ x m M B x a M B y m K 0
75 72 74 ffvelrnd m Fin ¬ a m φ x m M B x a M B y m coe 1 y / x M K Base R
76 69 75 eqeltrid m Fin ¬ a m φ x m M B x a M B y m y / x coe 1 M K Base R
77 eqid coe 1 a / x M = coe 1 a / x M
78 77 2 1 58 coe1f a / x M B coe 1 a / x M : 0 Base R
79 30 78 syl m Fin ¬ a m φ x m M B x a M B coe 1 a / x M : 0 Base R
80 79 46 ffvelrnd m Fin ¬ a m φ x m M B x a M B coe 1 a / x M K Base R
81 nfcv _ x a
82 nfcv _ x coe 1
83 nfcsb1v _ x a / x M
84 82 83 nffv _ x coe 1 a / x M
85 nfcv _ x K
86 84 85 nffv _ x coe 1 a / x M K
87 csbeq1a x = a M = a / x M
88 87 fveq2d x = a coe 1 M = coe 1 a / x M
89 88 fveq1d x = a coe 1 M K = coe 1 a / x M K
90 81 86 89 csbhypf y = a y / x coe 1 M K = coe 1 a / x M K
91 58 47 62 18 76 25 26 80 90 gsumunsn m Fin ¬ a m φ x m M B x a M B R y m a y / x coe 1 M K = R y m y / x coe 1 M K + R coe 1 a / x M K
92 57 91 eqtrid m Fin ¬ a m φ x m M B x a M B R x m a coe 1 M K = R y m y / x coe 1 M K + R coe 1 a / x M K
93 53 54 55 cbvmpt x m coe 1 M K = y m y / x coe 1 M K
94 93 eqcomi y m y / x coe 1 M K = x m coe 1 M K
95 94 oveq2i R y m y / x coe 1 M K = R x m coe 1 M K
96 95 oveq1i R y m y / x coe 1 M K + R coe 1 a / x M K = R x m coe 1 M K + R coe 1 a / x M K
97 92 96 eqtr2di m Fin ¬ a m φ x m M B x a M B R x m coe 1 M K + R coe 1 a / x M K = R x m a coe 1 M K
98 97 adantr m Fin ¬ a m φ x m M B x a M B coe 1 P x m M K = R x m coe 1 M K R x m coe 1 M K + R coe 1 a / x M K = R x m a coe 1 M K
99 52 98 eqtrd m Fin ¬ a m φ x m M B x a M B coe 1 P x m M K = R x m coe 1 M K coe 1 P x m a M K = R x m a coe 1 M K
100 99 exp31 m Fin ¬ a m φ x m M B x a M B coe 1 P x m M K = R x m coe 1 M K coe 1 P x m a M K = R x m a coe 1 M K
101 100 com23 m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x a M B coe 1 P x m a M K = R x m a coe 1 M K
102 101 ex m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x a M B coe 1 P x m a M K = R x m a coe 1 M K
103 102 a2d m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m M B x a M B coe 1 P x m a M K = R x m a coe 1 M K
104 103 imp4b m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m M B x a M B coe 1 P x m a M K = R x m a coe 1 M K
105 5 104 syl5bi m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m a M B coe 1 P x m a M K = R x m a coe 1 M K
106 105 ex m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m a M B coe 1 P x m a M K = R x m a coe 1 M K