Metamath Proof Explorer


Theorem coesub

Description: The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses coesub.1 A=coeffF
coesub.2 B=coeffG
Assertion coesub FPolySGPolyScoeffFfG=AfB

Proof

Step Hyp Ref Expression
1 coesub.1 A=coeffF
2 coesub.2 B=coeffG
3 plyssc PolySPoly
4 simpl FPolySGPolySFPolyS
5 3 4 sselid FPolySGPolySFPoly
6 ssid
7 neg1cn 1
8 plyconst 1×1Poly
9 6 7 8 mp2an ×1Poly
10 simpr FPolySGPolySGPolyS
11 3 10 sselid FPolySGPolySGPoly
12 plymulcl ×1PolyGPoly×1×fGPoly
13 9 11 12 sylancr FPolySGPolyS×1×fGPoly
14 eqid coeff×1×fG=coeff×1×fG
15 1 14 coeadd FPoly×1×fGPolycoeffF+f×1×fG=A+fcoeff×1×fG
16 5 13 15 syl2anc FPolySGPolyScoeffF+f×1×fG=A+fcoeff×1×fG
17 coemulc 1GPolycoeff×1×fG=0×1×fcoeffG
18 7 11 17 sylancr FPolySGPolyScoeff×1×fG=0×1×fcoeffG
19 2 oveq2i 0×1×fB=0×1×fcoeffG
20 18 19 eqtr4di FPolySGPolyScoeff×1×fG=0×1×fB
21 20 oveq2d FPolySGPolySA+fcoeff×1×fG=A+f0×1×fB
22 16 21 eqtrd FPolySGPolyScoeffF+f×1×fG=A+f0×1×fB
23 cnex V
24 plyf FPolySF:
25 plyf GPolySG:
26 ofnegsub VF:G:F+f×1×fG=FfG
27 23 24 25 26 mp3an3an FPolySGPolySF+f×1×fG=FfG
28 27 fveq2d FPolySGPolyScoeffF+f×1×fG=coeffFfG
29 nn0ex 0V
30 1 coef3 FPolySA:0
31 2 coef3 GPolySB:0
32 ofnegsub 0VA:0B:0A+f0×1×fB=AfB
33 29 30 31 32 mp3an3an FPolySGPolySA+f0×1×fB=AfB
34 22 28 33 3eqtr3d FPolySGPolyScoeffFfG=AfB