Metamath Proof Explorer


Theorem coemulc

Description: The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion coemulc AFPolyScoeff×A×fF=0×A×fcoeffF

Proof

Step Hyp Ref Expression
1 ssid
2 plyconst A×APoly
3 1 2 mpan A×APoly
4 plyssc PolySPoly
5 4 sseli FPolySFPoly
6 plymulcl ×APolyFPoly×A×fFPoly
7 3 5 6 syl2an AFPolyS×A×fFPoly
8 eqid coeff×A×fF=coeff×A×fF
9 8 coef3 ×A×fFPolycoeff×A×fF:0
10 ffn coeff×A×fF:0coeff×A×fFFn0
11 7 9 10 3syl AFPolyScoeff×A×fFFn0
12 fconstg A0×A:0A
13 12 adantr AFPolyS0×A:0A
14 13 ffnd AFPolyS0×AFn0
15 eqid coeffF=coeffF
16 15 coef3 FPolyScoeffF:0
17 16 adantl AFPolyScoeffF:0
18 17 ffnd AFPolyScoeffFFn0
19 nn0ex 0V
20 19 a1i AFPolyS0V
21 inidm 00=0
22 14 18 20 20 21 offn AFPolyS0×A×fcoeffFFn0
23 3 ad2antrr AFPolySn0×APoly
24 eqid coeff×A=coeff×A
25 24 coefv0 ×APoly×A0=coeff×A0
26 23 25 syl AFPolySn0×A0=coeff×A0
27 simpll AFPolySn0A
28 0cn 0
29 fvconst2g A0×A0=A
30 27 28 29 sylancl AFPolySn0×A0=A
31 26 30 eqtr3d AFPolySn0coeff×A0=A
32 simpr AFPolySn0n0
33 32 nn0cnd AFPolySn0n
34 33 subid1d AFPolySn0n0=n
35 34 fveq2d AFPolySn0coeffFn0=coeffFn
36 31 35 oveq12d AFPolySn0coeff×A0coeffFn0=AcoeffFn
37 5 ad2antlr AFPolySn0FPoly
38 24 15 coemul ×APolyFPolyn0coeff×A×fFn=k=0ncoeff×AkcoeffFnk
39 23 37 32 38 syl3anc AFPolySn0coeff×A×fFn=k=0ncoeff×AkcoeffFnk
40 nn0uz 0=0
41 32 40 eleqtrdi AFPolySn0n0
42 fzss2 n0000n
43 41 42 syl AFPolySn0000n
44 elfz1eq k00k=0
45 44 adantl AFPolySn0k00k=0
46 fveq2 k=0coeff×Ak=coeff×A0
47 oveq2 k=0nk=n0
48 47 fveq2d k=0coeffFnk=coeffFn0
49 46 48 oveq12d k=0coeff×AkcoeffFnk=coeff×A0coeffFn0
50 45 49 syl AFPolySn0k00coeff×AkcoeffFnk=coeff×A0coeffFn0
51 17 ffvelcdmda AFPolySn0coeffFn
52 27 51 mulcld AFPolySn0AcoeffFn
53 36 52 eqeltrd AFPolySn0coeff×A0coeffFn0
54 53 adantr AFPolySn0k00coeff×A0coeffFn0
55 50 54 eqeltrd AFPolySn0k00coeff×AkcoeffFnk
56 eldifn k0n00¬k00
57 56 adantl AFPolySn0k0n00¬k00
58 eldifi k0n00k0n
59 elfznn0 k0nk0
60 58 59 syl k0n00k0
61 eqid deg×A=deg×A
62 24 61 dgrub ×APolyk0coeff×Ak0kdeg×A
63 62 3expia ×APolyk0coeff×Ak0kdeg×A
64 23 60 63 syl2an AFPolySn0k0n00coeff×Ak0kdeg×A
65 0dgr Adeg×A=0
66 65 ad3antrrr AFPolySn0k0n00deg×A=0
67 66 breq2d AFPolySn0k0n00kdeg×Ak0
68 60 adantl AFPolySn0k0n00k0
69 nn0le0eq0 k0k0k=0
70 68 69 syl AFPolySn0k0n00k0k=0
71 67 70 bitrd AFPolySn0k0n00kdeg×Ak=0
72 64 71 sylibd AFPolySn0k0n00coeff×Ak0k=0
73 id k=0k=0
74 0z 0
75 elfz3 0000
76 74 75 ax-mp 000
77 73 76 eqeltrdi k=0k00
78 72 77 syl6 AFPolySn0k0n00coeff×Ak0k00
79 78 necon1bd AFPolySn0k0n00¬k00coeff×Ak=0
80 57 79 mpd AFPolySn0k0n00coeff×Ak=0
81 80 oveq1d AFPolySn0k0n00coeff×AkcoeffFnk=0coeffFnk
82 17 adantr AFPolySn0coeffF:0
83 fznn0sub k0nnk0
84 58 83 syl k0n00nk0
85 ffvelcdm coeffF:0nk0coeffFnk
86 82 84 85 syl2an AFPolySn0k0n00coeffFnk
87 86 mul02d AFPolySn0k0n000coeffFnk=0
88 81 87 eqtrd AFPolySn0k0n00coeff×AkcoeffFnk=0
89 fzfid AFPolySn00nFin
90 43 55 88 89 fsumss AFPolySn0k=00coeff×AkcoeffFnk=k=0ncoeff×AkcoeffFnk
91 49 fsum1 0coeff×A0coeffFn0k=00coeff×AkcoeffFnk=coeff×A0coeffFn0
92 74 53 91 sylancr AFPolySn0k=00coeff×AkcoeffFnk=coeff×A0coeffFn0
93 39 90 92 3eqtr2d AFPolySn0coeff×A×fFn=coeff×A0coeffFn0
94 simpl AFPolySA
95 eqidd AFPolySn0coeffFn=coeffFn
96 20 94 18 95 ofc1 AFPolySn00×A×fcoeffFn=AcoeffFn
97 36 93 96 3eqtr4d AFPolySn0coeff×A×fFn=0×A×fcoeffFn
98 11 22 97 eqfnfvd AFPolyScoeff×A×fF=0×A×fcoeffF