| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|
| 2 |
|
plyconst |
|
| 3 |
1 2
|
mpan |
|
| 4 |
|
plyssc |
|
| 5 |
4
|
sseli |
|
| 6 |
|
plymulcl |
|
| 7 |
3 5 6
|
syl2an |
|
| 8 |
|
eqid |
|
| 9 |
8
|
coef3 |
|
| 10 |
|
ffn |
|
| 11 |
7 9 10
|
3syl |
|
| 12 |
|
fconstg |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
ffnd |
|
| 15 |
|
eqid |
|
| 16 |
15
|
coef3 |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
ffnd |
|
| 19 |
|
nn0ex |
|
| 20 |
19
|
a1i |
|
| 21 |
|
inidm |
|
| 22 |
14 18 20 20 21
|
offn |
|
| 23 |
3
|
ad2antrr |
|
| 24 |
|
eqid |
|
| 25 |
24
|
coefv0 |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
simpll |
|
| 28 |
|
0cn |
|
| 29 |
|
fvconst2g |
|
| 30 |
27 28 29
|
sylancl |
|
| 31 |
26 30
|
eqtr3d |
|
| 32 |
|
simpr |
|
| 33 |
32
|
nn0cnd |
|
| 34 |
33
|
subid1d |
|
| 35 |
34
|
fveq2d |
|
| 36 |
31 35
|
oveq12d |
|
| 37 |
5
|
ad2antlr |
|
| 38 |
24 15
|
coemul |
|
| 39 |
23 37 32 38
|
syl3anc |
|
| 40 |
|
nn0uz |
|
| 41 |
32 40
|
eleqtrdi |
|
| 42 |
|
fzss2 |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
elfz1eq |
|
| 45 |
44
|
adantl |
|
| 46 |
|
fveq2 |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
fveq2d |
|
| 49 |
46 48
|
oveq12d |
|
| 50 |
45 49
|
syl |
|
| 51 |
17
|
ffvelcdmda |
|
| 52 |
27 51
|
mulcld |
|
| 53 |
36 52
|
eqeltrd |
|
| 54 |
53
|
adantr |
|
| 55 |
50 54
|
eqeltrd |
|
| 56 |
|
eldifn |
|
| 57 |
56
|
adantl |
|
| 58 |
|
eldifi |
|
| 59 |
|
elfznn0 |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
eqid |
|
| 62 |
24 61
|
dgrub |
|
| 63 |
62
|
3expia |
|
| 64 |
23 60 63
|
syl2an |
|
| 65 |
|
0dgr |
|
| 66 |
65
|
ad3antrrr |
|
| 67 |
66
|
breq2d |
|
| 68 |
60
|
adantl |
|
| 69 |
|
nn0le0eq0 |
|
| 70 |
68 69
|
syl |
|
| 71 |
67 70
|
bitrd |
|
| 72 |
64 71
|
sylibd |
|
| 73 |
|
id |
|
| 74 |
|
0z |
|
| 75 |
|
elfz3 |
|
| 76 |
74 75
|
ax-mp |
|
| 77 |
73 76
|
eqeltrdi |
|
| 78 |
72 77
|
syl6 |
|
| 79 |
78
|
necon1bd |
|
| 80 |
57 79
|
mpd |
|
| 81 |
80
|
oveq1d |
|
| 82 |
17
|
adantr |
|
| 83 |
|
fznn0sub |
|
| 84 |
58 83
|
syl |
|
| 85 |
|
ffvelcdm |
|
| 86 |
82 84 85
|
syl2an |
|
| 87 |
86
|
mul02d |
|
| 88 |
81 87
|
eqtrd |
|
| 89 |
|
fzfid |
|
| 90 |
43 55 88 89
|
fsumss |
|
| 91 |
49
|
fsum1 |
|
| 92 |
74 53 91
|
sylancr |
|
| 93 |
39 90 92
|
3eqtr2d |
|
| 94 |
|
simpl |
|
| 95 |
|
eqidd |
|
| 96 |
20 94 18 95
|
ofc1 |
|
| 97 |
36 93 96
|
3eqtr4d |
|
| 98 |
11 22 97
|
eqfnfvd |
|