Metamath Proof Explorer


Theorem colperpexlem1

Description: Lemma for colperp . First part of lemma 8.20 of Schwabhauser p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
colperpexlem.s S=pInv𝒢G
colperpexlem.m M=SA
colperpexlem.n N=SB
colperpexlem.k K=SQ
colperpexlem.a φAP
colperpexlem.b φBP
colperpexlem.c φCP
colperpexlem.q φQP
colperpexlem.1 φ⟨“ABC”⟩𝒢G
colperpexlem.2 φKMC=NC
Assertion colperpexlem1 φ⟨“BAQ”⟩𝒢G

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 colperpexlem.s S=pInv𝒢G
7 colperpexlem.m M=SA
8 colperpexlem.n N=SB
9 colperpexlem.k K=SQ
10 colperpexlem.a φAP
11 colperpexlem.b φBP
12 colperpexlem.c φCP
13 colperpexlem.q φQP
14 colperpexlem.1 φ⟨“ABC”⟩𝒢G
15 colperpexlem.2 φKMC=NC
16 1 2 3 4 6 5 10 7 13 mircl φMQP
17 1 2 3 4 6 5 10 7 12 mircl φMCP
18 eqid SB=SB
19 1 2 3 4 6 5 11 18 12 mircl φSBCP
20 1 2 3 4 6 5 10 7 19 mircl φMSBCP
21 1 2 3 4 6 5 11 8 12 mircl φNCP
22 15 21 eqeltrd φKMCP
23 1 2 3 4 6 5 13 9 17 mirbtwn φQKMCIMC
24 1 2 3 5 22 13 17 23 tgbtwncom φQMCIKMC
25 8 fveq1i NC=SBC
26 15 25 eqtrdi φKMC=SBC
27 26 oveq2d φMCIKMC=MCISBC
28 24 27 eleqtrd φQMCISBC
29 1 2 3 5 17 13 19 28 tgbtwncom φQSBCIMC
30 1 2 3 4 6 5 10 7 19 13 17 29 mirbtwni φMQMSBCIMMC
31 1 2 3 4 6 5 10 7 12 mirmir φMMC=C
32 31 oveq2d φMSBCIMMC=MSBCIC
33 30 32 eleqtrd φMQMSBCIC
34 1 2 3 5 17 19 axtgcgrrflx φMC-˙SBC=SBC-˙MC
35 1 2 3 4 6 5 10 7 19 17 miriso φMSBC-˙MMC=SBC-˙MC
36 31 oveq2d φMSBC-˙MMC=MSBC-˙C
37 34 35 36 3eqtr2d φMC-˙SBC=MSBC-˙C
38 26 oveq2d φQ-˙KMC=Q-˙SBC
39 1 2 3 4 6 5 13 9 17 mircgr φQ-˙KMC=Q-˙MC
40 38 39 eqtr3d φQ-˙SBC=Q-˙MC
41 1 2 3 4 6 5 10 7 13 17 miriso φMQ-˙MMC=Q-˙MC
42 31 oveq2d φMQ-˙MMC=MQ-˙C
43 40 41 42 3eqtr2d φQ-˙SBC=MQ-˙C
44 1 2 3 4 6 5 10 7 11 mirmir φMMB=B
45 eqidd φMB=MB
46 eqidd φMC=MC
47 44 45 46 s3eqd φ⟨“MMBMBMC”⟩=⟨“BMBMC”⟩
48 1 2 3 4 6 5 10 7 11 mircl φMBP
49 simpr φA=BA=B
50 49 fveq2d φA=BMA=MB
51 5 adantr φA=BG𝒢Tarski
52 10 adantr φA=BAP
53 1 2 3 4 6 51 52 7 mircinv φA=BMA=A
54 50 53 eqtr3d φA=BMB=A
55 eqidd φA=BB=B
56 eqidd φA=BC=C
57 54 55 56 s3eqd φA=B⟨“MBBC”⟩=⟨“ABC”⟩
58 14 adantr φA=B⟨“ABC”⟩𝒢G
59 57 58 eqeltrd φA=B⟨“MBBC”⟩𝒢G
60 5 adantr φABG𝒢Tarski
61 10 adantr φABAP
62 11 adantr φABBP
63 12 adantr φABCP
64 1 2 3 4 6 60 61 7 62 mircl φABMBP
65 14 adantr φAB⟨“ABC”⟩𝒢G
66 simpr φABAB
67 1 2 3 4 6 60 61 7 62 mirbtwn φABAMBIB
68 1 4 3 60 64 62 61 67 btwncolg1 φABAMBLBMB=B
69 1 4 3 60 64 62 61 68 colcom φABABLMBB=MB
70 1 2 3 4 6 60 61 62 63 64 65 66 69 ragcol φAB⟨“MBBC”⟩𝒢G
71 59 70 pm2.61dane φ⟨“MBBC”⟩𝒢G
72 1 2 3 4 6 5 48 11 12 71 7 10 mirrag φ⟨“MMBMBMC”⟩𝒢G
73 47 72 eqeltrrd φ⟨“BMBMC”⟩𝒢G
74 1 2 3 4 6 5 11 48 17 israg φ⟨“BMBMC”⟩𝒢GB-˙MC=B-˙SMBMC
75 73 74 mpbid φB-˙MC=B-˙SMBMC
76 1 2 3 4 6 5 10 7 12 11 mirmir2 φMSBC=SMBMC
77 76 oveq2d φB-˙MSBC=B-˙SMBMC
78 75 77 eqtr4d φB-˙MC=B-˙MSBC
79 1 2 3 5 11 17 11 20 78 tgcgrcomlr φMC-˙B=MSBC-˙B
80 1 2 3 4 6 5 11 18 12 mircgr φB-˙SBC=B-˙C
81 1 2 3 5 11 19 11 12 80 tgcgrcomlr φSBC-˙B=C-˙B
82 1 2 3 5 17 13 19 11 20 16 12 11 28 33 37 43 79 81 tgifscgr φQ-˙B=MQ-˙B
83 1 2 3 5 13 11 16 11 82 tgcgrcomlr φB-˙Q=B-˙MQ
84 7 fveq1i MQ=SAQ
85 84 oveq2i B-˙MQ=B-˙SAQ
86 83 85 eqtrdi φB-˙Q=B-˙SAQ
87 1 2 3 4 6 5 11 10 13 israg φ⟨“BAQ”⟩𝒢GB-˙Q=B-˙SAQ
88 86 87 mpbird φ⟨“BAQ”⟩𝒢G