Metamath Proof Explorer


Theorem constrcccllem

Description: Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrcccllem.a φ A Constr
constrcccllem.b φ B Constr
constrcccllem.c φ G Constr
constrcccllem.d φ D Constr
constrcccllem.e φ E Constr
constrcccllem.f φ F Constr
constrcccllem.x φ X
constrcccllem.1 φ A D
constrcccllem.2 φ X A = B G
constrcccllem.3 φ X D = E F
Assertion constrcccllem φ X Constr

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrcccllem.a φ A Constr
3 constrcccllem.b φ B Constr
4 constrcccllem.c φ G Constr
5 constrcccllem.d φ D Constr
6 constrcccllem.e φ E Constr
7 constrcccllem.f φ F Constr
8 constrcccllem.x φ X
9 constrcccllem.1 φ A D
10 constrcccllem.2 φ X A = B G
11 constrcccllem.3 φ X D = E F
12 peano2b n ω suc n ω
13 12 biimpi n ω suc n ω
14 13 ad2antlr φ n ω A B G D E F C n suc n ω
15 fveq2 m = suc n C m = C suc n
16 15 eleq2d m = suc n X C m X C suc n
17 16 adantl φ n ω A B G D E F C n m = suc n X C m X C suc n
18 8 ad2antrr φ n ω A B G D E F C n X
19 neeq1 a = A a d A d
20 oveq2 a = A X a = X A
21 20 fveq2d a = A X a = X A
22 21 eqeq1d a = A X a = b c X A = b c
23 19 22 3anbi12d a = A a d X a = b c X d = e f A d X A = b c X d = e f
24 23 rexbidv a = A f C n a d X a = b c X d = e f f C n A d X A = b c X d = e f
25 24 2rexbidv a = A d C n e C n f C n a d X a = b c X d = e f d C n e C n f C n A d X A = b c X d = e f
26 oveq1 b = B b c = B c
27 26 fveq2d b = B b c = B c
28 27 eqeq2d b = B X A = b c X A = B c
29 28 3anbi2d b = B A d X A = b c X d = e f A d X A = B c X d = e f
30 29 rexbidv b = B f C n A d X A = b c X d = e f f C n A d X A = B c X d = e f
31 30 2rexbidv b = B d C n e C n f C n A d X A = b c X d = e f d C n e C n f C n A d X A = B c X d = e f
32 oveq2 c = G B c = B G
33 32 fveq2d c = G B c = B G
34 33 eqeq2d c = G X A = B c X A = B G
35 34 3anbi2d c = G A d X A = B c X d = e f A d X A = B G X d = e f
36 35 rexbidv c = G f C n A d X A = B c X d = e f f C n A d X A = B G X d = e f
37 36 2rexbidv c = G d C n e C n f C n A d X A = B c X d = e f d C n e C n f C n A d X A = B G X d = e f
38 2 ad2antrr φ n ω A B G D E F C n A Constr
39 simpr φ n ω A B G D E F C n A B G D E F C n
40 39 unssad φ n ω A B G D E F C n A B G C n
41 38 40 tpssad φ n ω A B G D E F C n A C n
42 3 ad2antrr φ n ω A B G D E F C n B Constr
43 42 40 tpssbd φ n ω A B G D E F C n B C n
44 4 ad2antrr φ n ω A B G D E F C n G Constr
45 44 40 tpsscd φ n ω A B G D E F C n G C n
46 neeq2 d = D A d A D
47 oveq2 d = D X d = X D
48 47 fveq2d d = D X d = X D
49 48 eqeq1d d = D X d = e f X D = e f
50 46 49 3anbi13d d = D A d X A = B G X d = e f A D X A = B G X D = e f
51 oveq1 e = E e f = E f
52 51 fveq2d e = E e f = E f
53 52 eqeq2d e = E X D = e f X D = E f
54 53 3anbi3d e = E A D X A = B G X D = e f A D X A = B G X D = E f
55 oveq2 f = F E f = E F
56 55 fveq2d f = F E f = E F
57 56 eqeq2d f = F X D = E f X D = E F
58 57 3anbi3d f = F A D X A = B G X D = E f A D X A = B G X D = E F
59 5 ad2antrr φ n ω A B G D E F C n D Constr
60 39 unssbd φ n ω A B G D E F C n D E F C n
61 59 60 tpssad φ n ω A B G D E F C n D C n
62 6 ad2antrr φ n ω A B G D E F C n E Constr
63 62 60 tpssbd φ n ω A B G D E F C n E C n
64 7 ad2antrr φ n ω A B G D E F C n F Constr
65 64 60 tpsscd φ n ω A B G D E F C n F C n
66 9 ad2antrr φ n ω A B G D E F C n A D
67 10 ad2antrr φ n ω A B G D E F C n X A = B G
68 11 ad2antrr φ n ω A B G D E F C n X D = E F
69 66 67 68 3jca φ n ω A B G D E F C n A D X A = B G X D = E F
70 50 54 58 61 63 65 69 3rspcedvdw φ n ω A B G D E F C n d C n e C n f C n A d X A = B G X d = e f
71 25 31 37 41 43 45 70 3rspcedvdw φ n ω A B G D E F C n a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
72 71 3mix3d φ n ω A B G D E F C n a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
73 nnon n ω n On
74 73 ad2antlr φ n ω A B G D E F C n n On
75 eqid C n = C n
76 1 74 75 constrsuc φ n ω A B G D E F C n X C suc n X a C n b C n c C n d C n t r X = a + t b a X = c + r d c b a d c 0 a C n b C n c C n e C n f C n t X = a + t b a X c = e f a C n b C n c C n d C n e C n f C n a d X a = b c X d = e f
77 18 72 76 mpbir2and φ n ω A B G D E F C n X C suc n
78 14 17 77 rspcedvd φ n ω A B G D E F C n m ω X C m
79 1 isconstr X Constr m ω X C m
80 78 79 sylibr φ n ω A B G D E F C n X Constr
81 2 3 4 tpssd φ A B G Constr
82 5 6 7 tpssd φ D E F Constr
83 81 82 unssd φ A B G D E F Constr
84 tpfi A B G Fin
85 84 a1i φ A B G Fin
86 tpfi D E F Fin
87 86 a1i φ D E F Fin
88 85 87 unfid φ A B G D E F Fin
89 1 83 88 constrfiss φ n ω A B G D E F C n
90 80 89 r19.29a φ X Constr