Metamath Proof Explorer


Theorem cphsqrtcl3

Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphsqrtcl3 WCPreHiliKAKAK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 simpl1 WCPreHiliKAKA+WCPreHil
4 1 2 cphsubrg WCPreHilKSubRingfld
5 3 4 syl WCPreHiliKAKA+KSubRingfld
6 cnfldbas =Basefld
7 6 subrgss KSubRingfldK
8 5 7 syl WCPreHiliKAKA+K
9 simpl3 WCPreHiliKAKA+AK
10 8 9 sseldd WCPreHiliKAKA+A
11 10 negnegd WCPreHiliKAKA+A=A
12 11 fveq2d WCPreHiliKAKA+A=A
13 rpre A+A
14 13 adantl WCPreHiliKAKA+A
15 rpge0 A+0A
16 15 adantl WCPreHiliKAKA+0A
17 14 16 sqrtnegd WCPreHiliKAKA+A=iA
18 12 17 eqtr3d WCPreHiliKAKA+A=iA
19 simpl2 WCPreHiliKAKA+iK
20 cnfldneg AinvgfldA=A
21 10 20 syl WCPreHiliKAKA+invgfldA=A
22 subrgsubg KSubRingfldKSubGrpfld
23 5 22 syl WCPreHiliKAKA+KSubGrpfld
24 eqid invgfld=invgfld
25 24 subginvcl KSubGrpfldAKinvgfldAK
26 23 9 25 syl2anc WCPreHiliKAKA+invgfldAK
27 21 26 eqeltrrd WCPreHiliKAKA+AK
28 1 2 cphsqrtcl WCPreHilAKA0AAK
29 3 27 14 16 28 syl13anc WCPreHiliKAKA+AK
30 cnfldmul ×=fld
31 30 subrgmcl KSubRingfldiKAKiAK
32 5 19 29 31 syl3anc WCPreHiliKAKA+iAK
33 18 32 eqeltrd WCPreHiliKAKA+AK
34 33 ex WCPreHiliKAKA+AK
35 1 2 cphsqrtcl2 WCPreHilAK¬A+AK
36 35 3expia WCPreHilAK¬A+AK
37 36 3adant2 WCPreHiliKAK¬A+AK
38 34 37 pm2.61d WCPreHiliKAKAK