| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
|
| 2 |
|
cphsca.k |
|
| 3 |
|
simpl1 |
|
| 4 |
1 2
|
cphsubrg |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
cnfldbas |
|
| 7 |
6
|
subrgss |
|
| 8 |
5 7
|
syl |
|
| 9 |
|
simpl3 |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
10
|
negnegd |
|
| 12 |
11
|
fveq2d |
|
| 13 |
|
rpre |
|
| 14 |
13
|
adantl |
|
| 15 |
|
rpge0 |
|
| 16 |
15
|
adantl |
|
| 17 |
14 16
|
sqrtnegd |
|
| 18 |
12 17
|
eqtr3d |
|
| 19 |
|
simpl2 |
|
| 20 |
|
cnfldneg |
|
| 21 |
10 20
|
syl |
|
| 22 |
|
subrgsubg |
|
| 23 |
5 22
|
syl |
|
| 24 |
|
eqid |
|
| 25 |
24
|
subginvcl |
|
| 26 |
23 9 25
|
syl2anc |
|
| 27 |
21 26
|
eqeltrrd |
|
| 28 |
1 2
|
cphsqrtcl |
|
| 29 |
3 27 14 16 28
|
syl13anc |
|
| 30 |
|
cnfldmul |
|
| 31 |
30
|
subrgmcl |
|
| 32 |
5 19 29 31
|
syl3anc |
|
| 33 |
18 32
|
eqeltrd |
|
| 34 |
33
|
ex |
|
| 35 |
1 2
|
cphsqrtcl2 |
|
| 36 |
35
|
3expia |
|
| 37 |
36
|
3adant2 |
|
| 38 |
34 37
|
pm2.61d |
|