Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphsca.f | |
|
cphsca.k | |
||
Assertion | cphsqrtcl3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | |
|
2 | cphsca.k | |
|
3 | simpl1 | |
|
4 | 1 2 | cphsubrg | |
5 | 3 4 | syl | |
6 | cnfldbas | |
|
7 | 6 | subrgss | |
8 | 5 7 | syl | |
9 | simpl3 | |
|
10 | 8 9 | sseldd | |
11 | 10 | negnegd | |
12 | 11 | fveq2d | |
13 | rpre | |
|
14 | 13 | adantl | |
15 | rpge0 | |
|
16 | 15 | adantl | |
17 | 14 16 | sqrtnegd | |
18 | 12 17 | eqtr3d | |
19 | simpl2 | |
|
20 | cnfldneg | |
|
21 | 10 20 | syl | |
22 | subrgsubg | |
|
23 | 5 22 | syl | |
24 | eqid | |
|
25 | 24 | subginvcl | |
26 | 23 9 25 | syl2anc | |
27 | 21 26 | eqeltrrd | |
28 | 1 2 | cphsqrtcl | |
29 | 3 27 14 16 28 | syl13anc | |
30 | cnfldmul | |
|
31 | 30 | subrgmcl | |
32 | 5 19 29 31 | syl3anc | |
33 | 18 32 | eqeltrd | |
34 | 33 | ex | |
35 | 1 2 | cphsqrtcl2 | |
36 | 35 | 3expia | |
37 | 36 | 3adant2 | |
38 | 34 37 | pm2.61d | |