Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | crctcsh.v | |
|
crctcsh.i | |
||
crctcsh.d | |
||
crctcsh.n | |
||
crctcsh.s | |
||
crctcsh.h | |
||
crctcsh.q | |
||
Assertion | crctcshlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctcsh.v | |
|
2 | crctcsh.i | |
|
3 | crctcsh.d | |
|
4 | crctcsh.n | |
|
5 | crctcsh.s | |
|
6 | crctcsh.h | |
|
7 | crctcsh.q | |
|
8 | oveq2 | |
|
9 | crctiswlk | |
|
10 | 2 | wlkf | |
11 | 3 9 10 | 3syl | |
12 | cshw0 | |
|
13 | 11 12 | syl | |
14 | 8 13 | sylan9eqr | |
15 | 6 14 | eqtrid | |
16 | oveq2 | |
|
17 | 1 2 3 4 | crctcshlem1 | |
18 | 17 | nn0cnd | |
19 | 18 | subid1d | |
20 | 16 19 | sylan9eqr | |
21 | 20 | breq2d | |
22 | 21 | adantr | |
23 | oveq2 | |
|
24 | 23 | adantl | |
25 | elfzelz | |
|
26 | 25 | zcnd | |
27 | 26 | addridd | |
28 | 24 27 | sylan9eq | |
29 | 28 | fveq2d | |
30 | 28 | fvoveq1d | |
31 | 22 29 30 | ifbieq12d | |
32 | 31 | mpteq2dva | |
33 | elfzle2 | |
|
34 | 33 | adantl | |
35 | 34 | iftrued | |
36 | 35 | mpteq2dva | |
37 | 1 | wlkp | |
38 | 3 9 37 | 3syl | |
39 | ffn | |
|
40 | 4 | eqcomi | |
41 | 40 | oveq2i | |
42 | 41 | fneq2i | |
43 | 39 42 | sylib | |
44 | 43 | adantl | |
45 | dffn5 | |
|
46 | 44 45 | sylib | |
47 | 46 | eqcomd | |
48 | 38 47 | mpdan | |
49 | 36 48 | eqtrd | |
50 | 49 | adantr | |
51 | 32 50 | eqtrd | |
52 | 7 51 | eqtrid | |
53 | 15 52 | jca | |