Metamath Proof Explorer


Theorem crre

Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion crre ABA+iB=A

Proof

Step Hyp Ref Expression
1 recn AA
2 ax-icn i
3 recn BB
4 mulcl iBiB
5 2 3 4 sylancr BiB
6 addcl AiBA+iB
7 1 5 6 syl2an ABA+iB
8 reval A+iBA+iB=A+iB+A+iB2
9 7 8 syl ABA+iB=A+iB+A+iB2
10 cjcl A+iBA+iB
11 7 10 syl ABA+iB
12 7 11 addcld ABA+iB+A+iB
13 12 halfcld ABA+iB+A+iB2
14 1 adantr ABA
15 recl A+iBA+iB
16 7 15 syl ABA+iB
17 9 16 eqeltrrd ABA+iB+A+iB2
18 simpl ABA
19 17 18 resubcld ABA+iB+A+iB2A
20 2 a1i ABi
21 3 adantl ABB
22 2 21 4 sylancr ABiB
23 7 11 subcld ABA+iB-A+iB
24 23 halfcld ABA+iB-A+iB2
25 20 22 24 subdid ABiiBA+iB-A+iB2=iiBiA+iB-A+iB2
26 14 22 14 pnpcand ABA+iB-A+A=iBA
27 22 14 22 pnpcan2d ABiB+iB-A+iB=iBA
28 26 27 eqtr4d ABA+iB-A+A=iB+iB-A+iB
29 28 oveq1d ABA+iB-A+A+A+iB=iB+iB-A+iB+A+iB
30 14 14 addcld ABA+A
31 7 11 30 addsubd ABA+iB+A+iB-A+A=A+iB-A+A+A+iB
32 22 22 addcld ABiB+iB
33 32 7 11 subsubd ABiB+iB-A+iB-A+iB=iB+iB-A+iB+A+iB
34 29 31 33 3eqtr4d ABA+iB+A+iB-A+A=iB+iB-A+iB-A+iB
35 14 2timesd AB2A=A+A
36 35 oveq2d ABA+iB+A+iB-2A=A+iB+A+iB-A+A
37 22 2timesd AB2iB=iB+iB
38 37 oveq1d AB2iBA+iB-A+iB=iB+iB-A+iB-A+iB
39 34 36 38 3eqtr4d ABA+iB+A+iB-2A=2iBA+iB-A+iB
40 39 oveq1d ABA+iB+A+iB-2A2=2iBA+iB-A+iB2
41 2cn 2
42 mulcl 2A2A
43 41 14 42 sylancr AB2A
44 41 a1i AB2
45 2ne0 20
46 45 a1i AB20
47 12 43 44 46 divsubdird ABA+iB+A+iB-2A2=A+iB+A+iB22A2
48 mulcl 2iB2iB
49 41 22 48 sylancr AB2iB
50 49 23 44 46 divsubdird AB2iBA+iB-A+iB2=2iB2A+iB-A+iB2
51 40 47 50 3eqtr3d ABA+iB+A+iB22A2=2iB2A+iB-A+iB2
52 14 44 46 divcan3d AB2A2=A
53 52 oveq2d ABA+iB+A+iB22A2=A+iB+A+iB2A
54 22 44 46 divcan3d AB2iB2=iB
55 54 oveq1d AB2iB2A+iB-A+iB2=iBA+iB-A+iB2
56 51 53 55 3eqtr3d ABA+iB+A+iB2A=iBA+iB-A+iB2
57 56 oveq2d ABiA+iB+A+iB2A=iiBA+iB-A+iB2
58 20 20 21 mulassd ABiiB=iiB
59 20 23 44 46 divassd ABiA+iB-A+iB2=iA+iB-A+iB2
60 58 59 oveq12d ABiiBiA+iB-A+iB2=iiBiA+iB-A+iB2
61 25 57 60 3eqtr4d ABiA+iB+A+iB2A=iiBiA+iB-A+iB2
62 ixi ii=1
63 neg1rr 1
64 62 63 eqeltri ii
65 simpr ABB
66 remulcl iiBiiB
67 64 65 66 sylancr ABiiB
68 cjth A+iBA+iB+A+iBiA+iB-A+iB
69 68 simprd A+iBiA+iB-A+iB
70 7 69 syl ABiA+iB-A+iB
71 70 rehalfcld ABiA+iB-A+iB2
72 67 71 resubcld ABiiBiA+iB-A+iB2
73 61 72 eqeltrd ABiA+iB+A+iB2A
74 rimul A+iB+A+iB2AiA+iB+A+iB2AA+iB+A+iB2A=0
75 19 73 74 syl2anc ABA+iB+A+iB2A=0
76 13 14 75 subeq0d ABA+iB+A+iB2=A
77 9 76 eqtrd ABA+iB=A