Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | csdfil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 | |
|
2 | 1 | breq1d | |
3 | 2 | elrab | |
4 | velpw | |
|
5 | 4 | anbi1i | |
6 | 3 5 | bitri | |
7 | 6 | a1i | |
8 | simpl | |
|
9 | difid | |
|
10 | infn0 | |
|
11 | 10 | adantl | |
12 | 0sdomg | |
|
13 | 12 | adantr | |
14 | 11 13 | mpbird | |
15 | 9 14 | eqbrtrid | |
16 | difeq2 | |
|
17 | 16 | breq1d | |
18 | 17 | sbcieg | |
19 | 18 | adantr | |
20 | 15 19 | mpbird | |
21 | sdomirr | |
|
22 | 0ex | |
|
23 | difeq2 | |
|
24 | dif0 | |
|
25 | 23 24 | eqtrdi | |
26 | 25 | breq1d | |
27 | 22 26 | sbcie | |
28 | 27 | a1i | |
29 | 21 28 | mtbiri | |
30 | simp1l | |
|
31 | 30 | difexd | |
32 | sscon | |
|
33 | 32 | 3ad2ant3 | |
34 | ssdomg | |
|
35 | 31 33 34 | sylc | |
36 | domsdomtr | |
|
37 | 36 | ex | |
38 | 35 37 | syl | |
39 | vex | |
|
40 | difeq2 | |
|
41 | 40 | breq1d | |
42 | 39 41 | sbcie | |
43 | vex | |
|
44 | difeq2 | |
|
45 | 44 | breq1d | |
46 | 43 45 | sbcie | |
47 | 38 42 46 | 3imtr4g | |
48 | infunsdom | |
|
49 | 48 | ex | |
50 | difindi | |
|
51 | 50 | breq1i | |
52 | 49 51 | imbitrrdi | |
53 | 52 | 3ad2ant1 | |
54 | 46 42 | anbi12i | |
55 | 43 | inex1 | |
56 | difeq2 | |
|
57 | 56 | breq1d | |
58 | 55 57 | sbcie | |
59 | 53 54 58 | 3imtr4g | |
60 | 7 8 20 29 47 59 | isfild | |