Metamath Proof Explorer


Theorem csdfil

Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion csdfil XdomcardωXx𝒫X|XxXFilX

Proof

Step Hyp Ref Expression
1 difeq2 x=yXx=Xy
2 1 breq1d x=yXxXXyX
3 2 elrab yx𝒫X|XxXy𝒫XXyX
4 velpw y𝒫XyX
5 4 anbi1i y𝒫XXyXyXXyX
6 3 5 bitri yx𝒫X|XxXyXXyX
7 6 a1i XdomcardωXyx𝒫X|XxXyXXyX
8 simpl XdomcardωXXdomcard
9 difid XX=
10 infn0 ωXX
11 10 adantl XdomcardωXX
12 0sdomg XdomcardXX
13 12 adantr XdomcardωXXX
14 11 13 mpbird XdomcardωXX
15 9 14 eqbrtrid XdomcardωXXXX
16 difeq2 y=XXy=XX
17 16 breq1d y=XXyXXXX
18 17 sbcieg Xdomcard[˙X/y]˙XyXXXX
19 18 adantr XdomcardωX[˙X/y]˙XyXXXX
20 15 19 mpbird XdomcardωX[˙X/y]˙XyX
21 sdomirr ¬XX
22 0ex V
23 difeq2 y=Xy=X
24 dif0 X=X
25 23 24 eqtrdi y=Xy=X
26 25 breq1d y=XyXXX
27 22 26 sbcie [˙/y]˙XyXXX
28 27 a1i XdomcardωX[˙/y]˙XyXXX
29 21 28 mtbiri XdomcardωX¬[˙/y]˙XyX
30 simp1l XdomcardωXzXwzXdomcard
31 30 difexd XdomcardωXzXwzXwV
32 sscon wzXzXw
33 32 3ad2ant3 XdomcardωXzXwzXzXw
34 ssdomg XwVXzXwXzXw
35 31 33 34 sylc XdomcardωXzXwzXzXw
36 domsdomtr XzXwXwXXzX
37 36 ex XzXwXwXXzX
38 35 37 syl XdomcardωXzXwzXwXXzX
39 vex wV
40 difeq2 y=wXy=Xw
41 40 breq1d y=wXyXXwX
42 39 41 sbcie [˙w/y]˙XyXXwX
43 vex zV
44 difeq2 y=zXy=Xz
45 44 breq1d y=zXyXXzX
46 43 45 sbcie [˙z/y]˙XyXXzX
47 38 42 46 3imtr4g XdomcardωXzXwz[˙w/y]˙XyX[˙z/y]˙XyX
48 infunsdom XdomcardωXXzXXwXXzXwX
49 48 ex XdomcardωXXzXXwXXzXwX
50 difindi Xzw=XzXw
51 50 breq1i XzwXXzXwX
52 49 51 imbitrrdi XdomcardωXXzXXwXXzwX
53 52 3ad2ant1 XdomcardωXzXwXXzXXwXXzwX
54 46 42 anbi12i [˙z/y]˙XyX[˙w/y]˙XyXXzXXwX
55 43 inex1 zwV
56 difeq2 y=zwXy=Xzw
57 56 breq1d y=zwXyXXzwX
58 55 57 sbcie [˙zw/y]˙XyXXzwX
59 53 54 58 3imtr4g XdomcardωXzXwX[˙z/y]˙XyX[˙w/y]˙XyX[˙zw/y]˙XyX
60 7 8 20 29 47 59 isfild XdomcardωXx𝒫X|XxXFilX