Metamath Proof Explorer


Theorem cshwrepswhash1

Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018) (Revised by AV, 8-Nov-2018)

Ref Expression
Hypothesis cshwrepswhash1.m M=wWordV|n0..^WWcyclShiftn=w
Assertion cshwrepswhash1 AVNW=ArepeatSNM=1

Proof

Step Hyp Ref Expression
1 cshwrepswhash1.m M=wWordV|n0..^WWcyclShiftn=w
2 nnnn0 NN0
3 repsdf2 AVN0W=ArepeatSNWWordVW=Ni0..^NWi=A
4 2 3 sylan2 AVNW=ArepeatSNWWordVW=Ni0..^NWi=A
5 simp1 WWordVW=Ni0..^NWi=AWWordV
6 5 adantl AVNWWordVW=Ni0..^NWi=AWWordV
7 eleq1 N=WNW
8 7 eqcoms W=NNW
9 lbfzo0 00..^WW
10 9 biimpri W00..^W
11 8 10 syl6bi W=NN00..^W
12 11 3ad2ant2 WWordVW=Ni0..^NWi=AN00..^W
13 12 com12 NWWordVW=Ni0..^NWi=A00..^W
14 13 adantl AVNWWordVW=Ni0..^NWi=A00..^W
15 14 imp AVNWWordVW=Ni0..^NWi=A00..^W
16 cshw0 WWordVWcyclShift0=W
17 6 16 syl AVNWWordVW=Ni0..^NWi=AWcyclShift0=W
18 oveq2 n=0WcyclShiftn=WcyclShift0
19 18 eqeq1d n=0WcyclShiftn=WWcyclShift0=W
20 19 rspcev 00..^WWcyclShift0=Wn0..^WWcyclShiftn=W
21 15 17 20 syl2anc AVNWWordVW=Ni0..^NWi=An0..^WWcyclShiftn=W
22 eqeq2 w=WWcyclShiftn=wWcyclShiftn=W
23 22 rexbidv w=Wn0..^WWcyclShiftn=wn0..^WWcyclShiftn=W
24 23 rspcev WWordVn0..^WWcyclShiftn=WwWordVn0..^WWcyclShiftn=w
25 6 21 24 syl2anc AVNWWordVW=Ni0..^NWi=AwWordVn0..^WWcyclShiftn=w
26 25 ex AVNWWordVW=Ni0..^NWi=AwWordVn0..^WWcyclShiftn=w
27 4 26 sylbid AVNW=ArepeatSNwWordVn0..^WWcyclShiftn=w
28 27 3impia AVNW=ArepeatSNwWordVn0..^WWcyclShiftn=w
29 repsw AVN0ArepeatSNWordV
30 2 29 sylan2 AVNArepeatSNWordV
31 30 3adant3 AVNW=ArepeatSNArepeatSNWordV
32 simpll3 AVNW=ArepeatSNuWordVn0..^WW=ArepeatSN
33 32 oveq1d AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=ArepeatSNcyclShiftn
34 simp1 AVNW=ArepeatSNAV
35 34 ad2antrr AVNW=ArepeatSNuWordVn0..^WAV
36 2 3ad2ant2 AVNW=ArepeatSNN0
37 36 ad2antrr AVNW=ArepeatSNuWordVn0..^WN0
38 elfzoelz n0..^Wn
39 38 adantl AVNW=ArepeatSNuWordVn0..^Wn
40 repswcshw AVN0nArepeatSNcyclShiftn=ArepeatSN
41 35 37 39 40 syl3anc AVNW=ArepeatSNuWordVn0..^WArepeatSNcyclShiftn=ArepeatSN
42 33 41 eqtrd AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=ArepeatSN
43 42 eqeq1d AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=uArepeatSN=u
44 43 biimpd AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=uArepeatSN=u
45 44 rexlimdva AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=uArepeatSN=u
46 45 ralrimiva AVNW=ArepeatSNuWordVn0..^WWcyclShiftn=uArepeatSN=u
47 eqeq1 w=ArepeatSNw=uArepeatSN=u
48 47 imbi2d w=ArepeatSNn0..^WWcyclShiftn=uw=un0..^WWcyclShiftn=uArepeatSN=u
49 48 ralbidv w=ArepeatSNuWordVn0..^WWcyclShiftn=uw=uuWordVn0..^WWcyclShiftn=uArepeatSN=u
50 49 rspcev ArepeatSNWordVuWordVn0..^WWcyclShiftn=uArepeatSN=uwWordVuWordVn0..^WWcyclShiftn=uw=u
51 31 46 50 syl2anc AVNW=ArepeatSNwWordVuWordVn0..^WWcyclShiftn=uw=u
52 eqeq2 w=uWcyclShiftn=wWcyclShiftn=u
53 52 rexbidv w=un0..^WWcyclShiftn=wn0..^WWcyclShiftn=u
54 53 reu7 ∃!wWordVn0..^WWcyclShiftn=wwWordVn0..^WWcyclShiftn=wwWordVuWordVn0..^WWcyclShiftn=uw=u
55 28 51 54 sylanbrc AVNW=ArepeatSN∃!wWordVn0..^WWcyclShiftn=w
56 reusn ∃!wWordVn0..^WWcyclShiftn=wrwWordV|n0..^WWcyclShiftn=w=r
57 55 56 sylib AVNW=ArepeatSNrwWordV|n0..^WWcyclShiftn=w=r
58 1 eqeq1i M=rwWordV|n0..^WWcyclShiftn=w=r
59 58 exbii rM=rrwWordV|n0..^WWcyclShiftn=w=r
60 57 59 sylibr AVNW=ArepeatSNrM=r
61 1 cshwsex WWordVMV
62 61 3ad2ant1 WWordVW=Ni0..^NWi=AMV
63 4 62 syl6bi AVNW=ArepeatSNMV
64 63 3impia AVNW=ArepeatSNMV
65 hash1snb MVM=1rM=r
66 64 65 syl AVNW=ArepeatSNM=1rM=r
67 60 66 mpbird AVNW=ArepeatSNM=1