Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of MaedaMaeda p. 3. (Contributed by NM, 24-Dec-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csmdsym.1 | |
|
csmdsym.2 | |
||
Assertion | csmdsymi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csmdsym.1 | |
|
2 | csmdsym.2 | |
|
3 | incom | |
|
4 | 3 | sseq1i | |
5 | 4 | biimpri | |
6 | chjcom | |
|
7 | 2 6 | mpan2 | |
8 | 7 | ineq1d | |
9 | incom | |
|
10 | 8 9 | eqtrdi | |
11 | 10 | ad2antlr | |
12 | 2 | a1i | |
13 | id | |
|
14 | 1 | a1i | |
15 | 12 13 14 | 3jca | |
16 | 15 | ad2antlr | |
17 | inss2 | |
|
18 | ssid | |
|
19 | 17 18 | pm3.2i | |
20 | sseq2 | |
|
21 | sseq1 | |
|
22 | 20 21 | anbi12d | |
23 | 22 | 3anbi2d | |
24 | breq1 | |
|
25 | 23 24 | imbi12d | |
26 | h0elch | |
|
27 | 26 | elimel | |
28 | 1 2 27 2 | mdslmd4i | |
29 | 25 28 | dedth | |
30 | 29 | com12 | |
31 | 19 30 | mp3an3 | |
32 | 31 | imp | |
33 | 32 | an32s | |
34 | 33 | adantlll | |
35 | breq1 | |
|
36 | breq2 | |
|
37 | 35 36 | imbi12d | |
38 | 37 | rspccva | |
39 | 38 | adantlr | |
40 | 39 | adantr | |
41 | 34 40 | mpd | |
42 | simprr | |
|
43 | dmdi | |
|
44 | 16 41 42 43 | syl12anc | |
45 | 1 2 | chincli | |
46 | chjcom | |
|
47 | 45 46 | mpan | |
48 | 3 | oveq2i | |
49 | 47 48 | eqtrdi | |
50 | 49 | ad2antlr | |
51 | 11 44 50 | 3eqtr2d | |
52 | 51 | ex | |
53 | 5 52 | sylani | |
54 | 53 | ralrimiva | |
55 | 2 1 | mdsl2bi | |
56 | 54 55 | sylibr | |